精英家教網 > 初中數學 > 題目詳情
(2012•寶坻區(qū)二模)如圖,在平面直角坐標系xOy中,點B的坐標為(0,2),點D在x軸的正半軸上,∠ODB=30°,OE為△BOD的中線,過B、E兩點的拋物線與x軸相交于A、F兩點(A在F的左側).
(1)求拋物線的解析式;
(2)等邊△OMN的頂點M、N在線段AE上,求AE及AM的長;
(3)點P為△ABO內的一個動點,設m=PA+PB+PO,請直接寫出m的最小值,以及m取得最小值時,線段AP的長.
【答案】分析:(1)已知點B的坐標,可求出OB的長;在Rt△OBD中,已知了∠ODB=30°,通過解直角三角形即可求得OD的長,也就得到了點D的坐標;由于E是線段BD的中點,根據B、D的坐標即可得到E點的坐標;將B、E的坐標代入拋物線的解析式中,即可求得待定系數的值,由此確定拋物線的解析式;
(2)過E作EG⊥x軸于G,根據A、E的坐標,即可用勾股定理求得AE的長;
過O作AE的垂線,設垂足為K,易證得△AOK∽△AEG,通過相似三角形所得比例線段即可求得OK的長;在Rt△OMK中,通過解直角三角形,即可求得MK的值,而AK的長可在Rt△AEK中由勾股定理求得,根據AM=AK-KM或AM=AK+KM即可求得AM的長;
(3)由于點P到△ABO三頂點的距離和最短,那么點P是△ABO的費馬點,即∠APO=∠OPB=∠APB=120°;易證得△OBE是等邊三角形,那么PA+PO+PB的最小值應為AE的長;求AP的長時,可作△OBE的外切圓(設此圓為⊙Q),那么⊙Q與AE的交點即為m取最小值時P點的位置;設⊙Q與x軸的另一交點(O點除外)為H,易求得點Q的坐標,即可得到點H的坐標,也就得到了AH的長,相對于⊙Q來說,AE、AH都是⊙Q的割線,根據割線定理即可求得AP的長.
解答:解:(1)過E作EG⊥OD于G(1分)
∵∠BOD=∠EGD=90°,∠D=∠D,
∴△BOD∽△EGD,
∵點B(0,2),∠ODB=30°,
可得OB=2,;
∵E為BD中點,

∴EG=1,

∴點E的坐標為(2分)
∵拋物線經過B(0,2)、兩點,
,
可得
∴拋物線的解析式為;(3分)

(2)∵拋物線與x軸相交于A、F,A在F的左側,
∴A點的坐標為
,
∴在△AGE中,∠AGE=90°,(4分)
過點O作OK⊥AE于K,
可得△AOK∽△AEG




∵△OMN是等邊三角形,
∴∠NMO=60°
;
,或;(6分)
(寫出一個給1分)

(3)如圖;
以AB為邊做等邊三角形AO′B,以OA為邊做等邊三角形AOB′;
易證OE=OB=2,∠OBE=60°,則△OBE是等邊三角形;
連接OO′、BB′、AE,它們的交點即為m最小時,P點的位置(即費馬點);
∵OA=OB,∠B′OB=∠AOE=150°,OB=OE,
∴△AOE≌△B′OB;
∴∠B′BO=∠AEO;
∵∠BOP=∠EOP′,而∠BOE=60°,
∴∠POP'=60°,
∴△POP′為等邊三角形,
∴OP=PP′,
∴PA+PB+PO=AP+OP′+P′E=AE;
即m最小=AE=;
如圖;作正△OBE的外接圓⊙Q,
根據費馬點的性質知∠BPO=120°,則∠PBO+∠BOP=60°,而∠EBO=∠EOB=60°;
∴∠PBE+∠POE=180°,∠BPO+∠BEO=180°;
即B、P、O、E四點共圓;
易求得Q(,1),則H(,0);
∴AH=;
由割線定理得:AP•AE=OA•AH,
即:AP=OA•AH÷AE=×÷=
故:m可以取到的最小值為
當m取得最小值時,線段AP的長為
(如遇不同解法,請老師根據評分標準酌情給分)
點評:此題是二次函數的綜合類試題,涉及到二次函數解析式的確定、等邊三角形的性質、解直角三角形以及費馬點位置的確定和性質,能力要求極高,難度很大.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•寶坻區(qū)二模)計算sin30°+cos60°等于( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•寶坻區(qū)二模)下列汽車標志中,既是軸對稱圖形又是中心對稱圖形的是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•寶坻區(qū)二模)估算5+
6
的值在( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•寶坻區(qū)二模)如圖是甲、乙兩家商店銷售同一種產品的銷售價y(元)與銷售量x(件)之間的函數圖象.有下列結論:①當x=2時,在兩家買一樣;②當x>2時,在甲家買合算;③當0<x<2時,在乙家買合算.其中,正確結論的個數是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•寶坻區(qū)二模)已知a、b、c均為實數,且abc=1,則
1
a+ab+1
+
1
b+bc+1
+
1
c+ca+1
的值為(  )

查看答案和解析>>

同步練習冊答案