【題目】如圖,中,點是邊上的一個動點,過點作直線,交的平分線于點,交的外角平分線于點.
判斷與的大小關系?并說明理由;
當點運動到何處時,四邊形是矩形?并說出你的理由;
在的條件下,當滿足什么條件時,四邊形是正方形.直接寫出答案,不需說明理由.
【答案】(1)詳見解析;(2)當為中點時,四邊形是矩形,理由詳見解析;(3)當是直角三角形時,即當時,四邊形會是正方形,理由詳見解析.
【解析】
(1)利用平行線的性質得:∠OEC=∠ECB,根據(jù)角平分線的定義可知:∠ACE=∠ECB,由等量代換和等角對等邊得:OE=OC,同理:OC=OF,可得結論;
(2)先根據(jù)對角線互相平分證明四邊形AECF是平行四邊形,再由角平分線可得:∠ECF=90°,利用有一個角是直角的平行四邊形可得結論;
(3)由(2)可知,當點O為AC的中點時,四邊形AECF是矩形,再證明AC⊥EF,即可得出答案.
∵,
∴,
∵平分,
∴,
∴,
∴,
同理可得:,
∴;
當為中點時,四邊形是矩形;
理由如下:
∵,(已證),
∴四邊形是平行四邊形,
∵平分,平分,
∴,,
∴,
即,
∴四邊形是矩形;
當是直角三角形時,即當時,四邊形會是正方形;
理由:由得,當點為的中點時,四邊形是矩形,
∵,平分,
∴,
∴,
∴,
∴,
∴四邊形是正方形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3).
(1)請畫出△ABC關于y軸對稱的△DEF(其中D、E、F分別是A、B、C的對應點).
(2)直接寫出(1)中F點的坐標為 .
(3)若直線l經過點(0,﹣2)且與x軸平行,則點C關于直線l的對稱點的坐標為 .
(4)在y軸上存在一點P,使PC﹣PB最大,則點P的坐標為 .
(5)第一象限有一點M(4,2),在x軸上找一點Q使CQ+MQ最短,畫出最短路徑,保留作圖痕跡.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形中,點是上任意一點,以為邊作正方形.
①連接,求證:;
②連接,猜想的度數(shù),并證明你的結論;
③設點在線段上運動,,正方形的面積為,正方形的面積為,試求與的函數(shù)關系式,并寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個大小不同的等腰直角三角板按圖①所示的位置放置,圖②是由它抽象畫出的幾何圖形,,,,,,在同一條直線上,連接.
(1)請找出圖②中與全等的三角形,并給予證明(說明:結論中不得含有未標識的字母);
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在矩形中,,,四邊形的三個頂點、、分別在矩形邊、、上,.
如圖,當四邊形為正方形時,求的面積;
如圖,當四邊形為菱形時,設,的面積為,求關于的函數(shù)關系式,并寫出函數(shù)的定義域.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為中的一條射線,點在邊上,于,交于點,交于點,于點,交于點,連接交于點.
求證:四邊形為矩形;
若,試探究與的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形中,點、是對角線上的兩點,且.則下列結論中,錯誤的是( )
A. 若四邊形是平行四邊形,則也是平行四邊形
B. 若四邊形是菱形,則四邊形也是菱形
C. 若四邊形是矩形,則四邊形也是矩形
D. 若四邊形是正方形,則四邊形一定是菱形
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com