【題目】如圖1是一種折疊臺燈,將其放置在水平桌面上,圖2是其簡化示意圖,測得其燈臂長為燈翠長為,底座厚度為根據(jù)使用習(xí)慣,燈臂的傾斜角固定為,
(1)當(dāng)轉(zhuǎn)動到與桌面平行時,求點(diǎn)到桌面的距離;
(2)在使用過程中發(fā)現(xiàn),當(dāng)轉(zhuǎn)到至時,光線效果最好,求此時燈罩頂端到桌面的高度(參考數(shù)據(jù):,結(jié)果精確到個位).
【答案】(1)點(diǎn)到桌面的距離為;(2)燈罩頂端到桌面的高度約為.
【解析】
(1)作CM⊥EF于M,BP⊥AD于P,交EF于N,則CM=BN,PN=3,由直角三角形的性質(zhì)得出AP=AB=14,BP=AP=14,得出CM=BN=BP+PN=14+3即可;
(2)作CM⊥EF于M,作BQ⊥CM于Q,BP⊥AD于P,交EF于N,則∠QBN=90°,CM=BN,PN=3,由(1)得QM=BN,求出∠CBQ=25,由三角函數(shù)得出CQ=BC×sin25,得出CM=CQ+QM即可.
解當(dāng)轉(zhuǎn)動到與桌面平行時,
如圖2所示:作于于,交于則
,
即點(diǎn)到桌面的距離為;
作于,作于于,交于,如圖3所示:
則,
由得
,
在中,
,
即此時燈罩頂端到桌面的高度約為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明想測量一棵樹的高度,他發(fā)現(xiàn)樹的影子恰好落在地面和一斜坡上;如圖,此時測得地面上的影長為8米,坡面上的影長為4米.已知斜坡的坡角為30°,同一時刻,一根長為1米,垂直于地面放置的標(biāo)桿在地面上的影長為2米,則樹的高度為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家為迎接“10周年購物狂歡節(jié)”,準(zhǔn)備將編號為l號,2號,…,60號的獎券分別對應(yīng)60份獎品.現(xiàn)將獎券不均勻分配放置在,,三個抽獎盒中,若將盒中的26號獎券調(diào)換到盒,將盒中的44號獎券調(diào)換到盒,此時,、兩盒獎券的編號平均數(shù)比調(diào)換前增加了0.6,盒獎券的編號平均數(shù)比調(diào)換前增加了0.9,同時經(jīng)計(jì)算發(fā)現(xiàn),盒中編號平均數(shù)調(diào)換前低于36,調(diào)換后編號平均數(shù)卻高于36,則調(diào)換前盒中有_________張獎券.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,H為射線OA上一定點(diǎn),,P為射線OB上一點(diǎn),M為線段OH上一動點(diǎn),連接PM,滿足為鈍角,以點(diǎn)P為中心,將線段PM順時針旋轉(zhuǎn),得到線段PN,連接ON.
(1)依題意補(bǔ)全圖1;
(2)求證:;
(3)點(diǎn)M關(guān)于點(diǎn)H的對稱點(diǎn)為Q,連接QP.寫出一個OP的值,使得對于任意的點(diǎn)M總有ON=QP,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點(diǎn)C射進(jìn)房間的地板F處,中午太陽光恰好能從窗戶的最低點(diǎn)D射進(jìn)房間的地板E處,小明測得窗子距地面的高度OD=0.8 m,窗高CD=1.2 m,并測得OE=0.8 m,OF=3 m,求圍墻AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級學(xué)生立定跳遠(yuǎn)水平,隨機(jī)抽取該年級50名學(xué)生進(jìn)行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
請根據(jù)圖表中所提供的信息,完成下列問題:
(1)表中________,________,樣本成績的中位數(shù)落在證明見解析________范圍內(nèi);
(2)請把頻數(shù)分布直方圖補(bǔ)充完整;
(3)該校九年級共有1000名學(xué)生,估計(jì)該年級學(xué)生立定跳遠(yuǎn)成績在范圍內(nèi)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為菱形,以為直徑作交于點(diǎn),連接交于點(diǎn),是上的一點(diǎn),且,連接.
(1)求證:.
(2)求證:是的切線.
(3)若,,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△AOB中,點(diǎn)B在x軸正半軸上,點(diǎn)A坐標(biāo)為(1, ),將△AOB繞點(diǎn)O順時針旋轉(zhuǎn)15°,此時點(diǎn)A對應(yīng)點(diǎn)A′的坐標(biāo)是( )
A.(2,2)B.(,1)C.D.(,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com