如圖,在矩形ABCD中,AB=4cm,AD=2cm,動點M自點A出發(fā)沿A→B的方向,以每秒1cm的速度運動,同時動點N自點A出發(fā)沿A→D→C的方向以每秒2cm的速度運動,當(dāng)點N到達點C時,兩點同時停止運動,設(shè)運動時間為x(秒),△AMN的面積為y(cm2),則下列圖象中能反映y與x之間的函數(shù)關(guān)系的是( 。
分析:△AMN以AM為底邊,分點N在AD上運動與在DC上運動兩段,根據(jù)三角形的面積公式分別求出運動時的y與x之間的函數(shù)關(guān)系,然后根據(jù)二次函數(shù)圖象與一次函數(shù)圖象觀察各選項中的圖象即可得解.
解答:解:在矩形ABCD中,AB=4cm,AD=2cm,
AD+DC=AB+AD=4+2=6cm,
∵點M以每秒1cm的速度運動,
∴4÷1=4秒,
∵點N以每秒2cm的速度運動,
∴6÷2=3秒,
∴點N先到達終點,運動時間為3秒,
①點N在AD上運動時,y=
1
2
AM•AN=
1
2
x•2x=x2(0≤x≤1);
②點N在DC上運動時,y=
1
2
AM•AD=
1
2
x•2=x(1≤x≤3),
∴能反映y與x之間的函數(shù)關(guān)系的是D選項.
故選D.
點評:本題考查了動點問題的函數(shù)圖象,二次函數(shù)圖象,三角形的面積,矩形的性質(zhì),根據(jù)題意理清動點的時間分段,并根據(jù)三角形的面積公式列出函數(shù)關(guān)系式是解題的關(guān)鍵,難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點P從點A出發(fā)以1cm/s的速度向點B運動,點Q從點B出發(fā)以2cm/s的速度向點C運動,設(shè)經(jīng)過的時間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點P從點A出發(fā),沿A→B→C→D路線向點D勻速運動,到達點D后停止;點Q從點D出發(fā),沿 D→C→B→A路線向點A勻速運動,到達點A后停止.若點P、Q同時出發(fā),在運動過程中,Q點停留了1s,圖②是P、Q兩點在折線AB-BC-CD上相距的路程S(cm)與時間t(s)之間的函數(shù)關(guān)系圖象.
(1)請解釋圖中點H的實際意義?
(2)求P、Q兩點的運動速度;
(3)將圖②補充完整;
(4)當(dāng)時間t為何值時,△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時,y的值最大,最大值是多少?
(3)若設(shè)線段AB的長為m,上述其它條件不變,m為何值時,函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊答案