8、如圖:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,
求∠BCD的度數(shù).
分析:由AB∥CF,∠ABC=70°,易求∠BCF,又DE∥CF,∠CDE=130°,那么易求∠DCF,于是∠BCD=∠BCF-∠DCF可求.
解答:解:∵AB∥CF,∠ABC=70°,
∴∠BCF=∠ABC=70°,
又∵DE∥CF,∠CDE=130°,
∴∠DCF+∠CDE=180°,
∴∠DCF=50°,
∴∠BCD=∠BCF-∠DCF=70°-50°=20°.
點評:本題利用了平行線的性質:兩直線平行,內錯角相等;兩直線平行,同旁內角互補.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

5、如圖,已知AB∥DE,∠A=136°,∠C=164°,則∠D的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB=DE,BC=EF,∠B=∠E,A、F、C、D在同一條直線上,
(1)求證:EF∥BC;
(2)若AD=10,CF=4,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,請補充完整過程,說明△ABC≌△DEF的理由.
∵AB∥DE
∴∠
A
A
=∠
EDF
EDF

∵BC∥EF
∴∠
F
F
=∠
BCA
BCA
  ( 同 理 )
∵AD=CF   (已知)
∴AD+CD=CF+CD
AC
AC
=
DF
DF

在△ABC和△DEF中

∴△ABC≌△DEF
(ASA)
(ASA)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB∥DE,∠B=80°,CM平分∠BCE,求∠DCM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB∥DE,∠B=80°,CM平分∠BCD,CM⊥CN,垂足為C.求∠NCE的度數(shù).

查看答案和解析>>

同步練習冊答案