精英家教網 > 初中數學 > 題目詳情

【題目】抗擊疫情,我們每個人都要做到講衛(wèi)生,勤洗手,科學消毒,如圖(1)是一瓶消毒洗手液. 圖(2)是它的示意圖,當手按住頂部A下壓時,洗手液瞬間從噴口B流出,路線從拋物線經過C,E兩點.瓶子上部分是由弧和弧組成,其圓心分別為D,C.下部分的是矩形CGHD的視圖,CG=8 cm,GH=10 cm,點E到臺面GH的距離為14 cm,點B到臺面的距離為20 cm,且B,D,H三點共線.若手心距DH的水平距離為2 cm時剛好接洗手液,此時手心距水平臺面的高度為______cm

【答案】17

【解析】

根據題意得出各點坐標,利用待定系數法求拋物線解析式進而求解.

解: 如圖:

CD=GH=DE=10,CG=8,

根據題意,得

EF=

由勾股定理,得:,

∵點D的橫坐標為5,則點E的橫坐標為;

C-58),E-3,14),B5,20).

設拋物線解析式為y=ax2+bx+c,

因為拋物線經過C、E、B三點,

,

解得:,

∴拋物線的解析式為:

∵手心距DH的水平距離為2 cm時剛好接洗手液,

時,有

∴手心距水平臺面的高度為17cm;

故答案為:17.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】課題研究小組對附著在物體表面的三個微生物(課題小組成員把他們分別標號為1,23)的生長情況進行觀察記錄.這三個微生物第一天各自一分為二,產生新的微生物(分別被標號為4,5,6,7,89),接下去每天都按照這樣的規(guī)律變化,即每個微生物一分為二,形成新的微生物(課題組成員用如圖所示的圖形進行形象的記錄).那么標號為100的微生物會出現在( )

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠C90°,矩形DEFG的頂點G、F分別在AC、BC上,DEAB上,設AG5,AD4,求ADGFEB的面積比.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將大小兩把含30°角的直角三角尺按如圖1 位置擺放,即大小直角三角尺的直角頂點C 重合,小三角尺的頂點 D、E 分別在大三角尺的直角邊 ACBC 上,此時小三角尺的斜邊 DE 恰好經過大三角尺的重心G .已知A CDE 30°, AB 12 .

(1)求小三角尺的直角邊CD 的長;

(2)將小三角尺繞點C 逆時針旋轉,當點D第一次落在大三角尺的邊 AB 上時(如圖2),求點 B 、 E 之間的距離;

(3)在小三角尺繞點C 旋轉的過程中,當直線 DE 經過點 A 時,求BAE 的正弦值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀對話,解答問題:

1)分別用ab表示小冬從小麗、小兵袋子中抽出的卡片上標有的數字,請用樹狀圖法或列表法寫出(a,b)的所有取值;

2)求在(a,b)中使關于x的一元二次方程x2﹣ax+2b=0有實數根的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知四邊形ABCD是正方形,點P在直線BC上,點G在直線AD上(P,G不與正方形頂點重合,且在CD的同側),PD=PG,DFPG于點H,交直線AB于點F,將線段PG繞點P逆時針旋轉90°得到線段PE,連結EF

1)如圖1,當點P與點G分別在線段BC與線段AD上時.

①求證:DF=PG;

②若AB=3,PC=1,求四邊形PEFD 的面積;

2)如圖2,當點P與點G分別在線段BC與線段AD的延長線上時,請猜想四邊形PEFD 是怎樣的特殊四邊形,并證明你的猜想.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線y=2x+b與雙曲線交于A,B兩點.P是線段AB上一點(不與點A,點B重合),過點P作平行于x軸的直線交雙曲線于點M,過點P作平行于y軸的直線交雙曲線于點N

1)當點A的橫坐標為1時,求b的值:

2)在(1)的條件下,設P點的橫坐標為m

①若m=-1,判斷PMPN的數量關系,并說明理由;

②若PMPN,結合函數圖象,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明家所在居民樓的對面有一座大廈AB,高為74米,為測量居民樓與大廈之間的距離,小明從自己家的窗戶C處測得大廈頂部A的仰角為37°,大廈底部B的俯角為48°

1)求∠ACB的度數;

2)求小明家所在居民樓與大廈之間的距離.(參考數據:sin37°≈cos37°≈,tan37°≈,sin48°≈,cos48°≈,tan48°≈

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場銷售一種名牌襯衫,平均每天可售出20件,每件盈利40元,為了擴大銷售,增加盈利,盡量減少庫存,商場決定采取適當的降價措施,經調查發(fā)現,如果每件襯衫每降價1元,商場平均每天可多售出2件,

1)若商場平均每天要盈利1200元,每件襯衫應降價多少元?

2)當每件襯衫降價多少元時,商場每天獲利最大,每天獲利最大是多少元?

查看答案和解析>>

同步練習冊答案