【題目】如圖,直線y=ax+1與x軸、y軸分別相交于A、B兩點,與雙曲線y= (x>0)相交于點P,PC⊥x軸于點C,且PC=2,點A的坐標為(﹣2,0).
(1)求雙曲線的解析式;
(2)若點Q為雙曲線上點P右側的一點,且QH⊥x軸于H,當以點Q、C、H為頂點的三角形與△AOB相似時,求點Q的坐標.
【答案】
(1)
解:把A(﹣2,0)代入y=ax+1中,求得a= ,
∴y= x+1,
由PC=2,把y=2代入y= x+1中,得x=2,即P(2,2),
把P代入y= 得:k=4,
則雙曲線解析式為y= ;
(2)
解:設Q(a,b),
∵Q(a,b)在y= 上,
∴b= ,
當△QCH∽△BAO時,可得 = ,即 = ,
∴a﹣2=2b,即a﹣2= ,
解得:a=4或a=﹣2(舍去),
∴Q(4,1);
當△QCH∽△ABO時,可得 = ,即 = ,
整理得:2a﹣4= ,
解得:a=1+ 或a=1﹣ (舍),
∴Q(1+ ,2 ﹣2).
綜上,Q(4,1)或Q(1+ ,2 ﹣2).
【解析】(1)把A坐標代入直線解析式求出a的值,確定出直線解析式,把y=2代入直線解析式求出x的值,確定出P坐標,代入反比例解析式求出k的值,即可確定出雙曲線解析式;(2)設Q(a,b),代入反比例解析式得到b= ,分兩種情況考慮:當△QCH∽△BAO時;當△QCH∽△ABO時,由相似得比例求出a的值,進而確定出b的值,即可得出Q坐標.
科目:初中數學 來源: 題型:
【題目】如圖,小俊在A處利用高為1.5米的測角儀AB測得樓EF頂部E的仰角為30°,然后前進12米到達C處,又測得樓頂E的仰角為60°,求樓EF的高度.(結果精確到0.1米)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:二次函數y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標為(﹣3,0),與y軸交于點C,點D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
(3)若拋物線上有一動點P,使三角形ABP的面積為6,求P點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某服裝店用4500元購進一批襯衫,很快售完,服裝店老板又用2100元購進第二批該款式的襯衫,進貨量是第一次的一半,但進價每件比第一批降低了10元,求這兩次各購進這種襯衫多少件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:AB、CD為⊙O的直徑,弦BE交CD于點F,連接DE交AB于點G,GO=GD.
(1)如圖1,求證:DE=DF;
(2)如圖2,作弦AK∥DC,AK交BE于點N,連接CK,求證:四邊形KNFC為平行四邊形;
(3)如圖3,作弦CH,連接DH,∠CDH=3∠EDH,CH=2 ,BE=4 ,求DH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y= 的圖象與一次函數y=kx﹣3的圖象在第一象限內相交于點A,且點A的橫坐標為4.
(1)求點A的坐標及一次函數的解析式;
(2)若直線x=2與反比例函數和一次函數的圖象分別交于點B、C,求線段BC的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com