【題目】如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點(diǎn),點(diǎn)C是⊙O外一點(diǎn),且∠DBC=∠A,連接OE并延長(zhǎng)與⊙O相交于點(diǎn)F,與BC相交于點(diǎn)C.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為6,BC=8,求弦BD的長(zhǎng).
【答案】(1)證明見(jiàn)解析(2)9.6
【解析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD, ,再由圓周角定理可得 ,從而得到∠ OBE+∠ DBC=90°,即 ,命題得證.
(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長(zhǎng).
試題解析:(1)證明:如下圖所示,連接OB.
∵ E是弦BD的中點(diǎn),∴ BE=DE,OE⊥ BD,,
∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.
∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,
∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BC⊥OB,∴ BC是⊙ O的切線.
(2)解:∵ OB=6,BC=8,BC⊥OB,∴ ,
∵ ,∴ ,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+4x.
(1)寫(xiě)出二次函數(shù)y=﹣x2+4x圖象的對(duì)稱軸;
(2)在給定的平面直角坐標(biāo)系中,畫(huà)出這個(gè)函數(shù)的圖象(列表、描點(diǎn)、連線);
(3)根據(jù)圖象,寫(xiě)出當(dāng)y<0時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x﹣4與x軸交于點(diǎn)A,以OA為斜邊在x軸上方作等腰Rt△OAB,并將Rt△AOB沿x軸向右平移,當(dāng)點(diǎn)B落在直線y=x﹣4上時(shí),Rt△OAB掃過(guò)的面積是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上的 A 、 B 兩點(diǎn)所表示的數(shù)分別為 a 、b,a b 0 ,ab 0
(1)原點(diǎn)O 的位置在 ;
A.點(diǎn) A 的右邊 B. 點(diǎn) B 的左邊
C.點(diǎn) A 與點(diǎn) B 之間,且靠近點(diǎn) A D. 點(diǎn) A 與點(diǎn) B 之間,且靠近點(diǎn) B
(2)若 a b 2 ,
①利用數(shù)軸比較大。 a 1, b 1 ;(填“>”、“<”或“=”)
②化簡(jiǎn):|a-1|+|b+1|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的中線BD,CE交于點(diǎn)O,F,G分別是BO,CO的中點(diǎn).
(1)填空:四邊形DEFG是 四邊形.
(2)若四邊形DEFG是矩形,求證:AB=AC.
(3)若四邊形DEFG是邊長(zhǎng)為2的正方形,試求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時(shí),它是菱形 B. 當(dāng)AC⊥BD時(shí),它是菱形
C. 當(dāng)∠ABC=90°時(shí),它是矩形 D. 當(dāng)AC=BD時(shí),它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點(diǎn)D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為θ.
(1)問(wèn)題發(fā)現(xiàn)
①當(dāng)θ=0°時(shí),= ;
②當(dāng)θ=180°時(shí),= .
(2)拓展探究
試判斷:當(dāng)0°≤θ<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情形給出證明;
(3)問(wèn)題解決
①在旋轉(zhuǎn)過(guò)程中,BE的最大值為 ;
②當(dāng)△ADE旋轉(zhuǎn)至B、D、E三點(diǎn)共線時(shí),線段CD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,A(1,0)、點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(-3,2).
(1)直接寫(xiě)出點(diǎn)E的坐標(biāo) ;D的坐標(biāo)
(3)點(diǎn)P是線段CE上一動(dòng)點(diǎn),設(shè)∠CBP=x°,∠PAD=y°,∠BPA=z°,確定x, y,z之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥CD,點(diǎn)M,N分別是AB,CD上兩點(diǎn),點(diǎn)G在AB,CD之間.
(1)求證:∠AMG+∠CNG=∠MGN;
(2)如圖②,點(diǎn)E是AB上方一點(diǎn),MF平分∠AME,若點(diǎn)G恰好在MF的反向延長(zhǎng)線上,且NE平分∠CNG,2∠E+∠G=90°,求∠AME的度數(shù);
(3)如圖③,若點(diǎn)P是(2)中的EM上一動(dòng)點(diǎn),PQ平分∠MPQ.NH平分∠PNC,交AB于點(diǎn)H,PJ∥NH,直接寫(xiě)出∠JPQ的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com