【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點G,點F是CD上一點,且滿足若 = ,連接AF并延長交⊙O于點E,連接AD、DE,若CF=2,AF=3.
(1)求證:△ADF∽△AED;
(2)求FG的長;
(3)求tan∠E的值.

【答案】
(1)證明:∵AB是⊙O的直徑,弦CD⊥AB,

∴DG=CG,

∴由垂徑定理可知:

∴∠ADF=∠AED,

∵∠FAD=∠DAE(公共角),

∴△ADF∽△AED


(2)解:∵ = ,CF=2,

∴FD=6,

∴CD=DF+CF=8,

∴由垂徑定理可知:CG=DG=4,

∴FG=CG﹣CF=2


(3)解:∵AF=3,F(xiàn)G=2,

在△AFG中,

∴由勾股定理可知:AG= =

tan∠E=tan∠ADF= =


【解析】(1)AB是⊙O的直徑,弦CD⊥AB,DG=CG,由垂徑定理可知: ,從而可知∠ADF=∠AED,從而可證明△ADF∽△AED.(2)由于 = ,所以CF=2,F(xiàn)D=6,從而CD=DF+CF=8,由垂徑定理可知CD=DG=4,從而求出FG的長度;(3)由于AF=3,F(xiàn)G=2,由勾股定理可知:AG= = ,從而可知tan∠E=tan∠ADF= =
【考點精析】關(guān)于本題考查的勾股定理的概念和垂徑定理,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,∠A=60°BD、BE三等分∠ABC,CDCE三等分∠ACB,連接DE,則∠BDE=_____________°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 RtABC 中,∠C=90°,AC=8cm,BC=6cm,M AC上,且AM=6cm,過點 A( BC AC 同側(cè))作射線 ANAC,若動點 P 從點 A 出發(fā),沿射線 AN 勻速運動,運動速度為 1cm/s,設(shè)點 P 運動時間為 t 秒.

(1)經(jīng)過 秒時,RtAMP 是等腰直角三角形?

(2)經(jīng)過幾秒時,PM⊥MB?

(3)經(jīng)過幾秒時,PM⊥AB?

(4)△BMP 是等腰三角形時,直接寫出 t 的所有值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明同學在A、B兩家超市發(fā)現(xiàn)他看中的隨身聽和書包的單價都相同,隨身聽和書包單價之和是452元,且隨身聽的單價比書包單價的4倍少8元.

(1)求小明看中的隨身聽和書包單價各是多少元?

(2)假日期間商家開展促銷活動,超市A所有商品打八折銷售,超市B全場購物滿100元返購物券30元銷售(購物滿100元返購物券30元,購物滿200元返購物券60元,以此類推;不足100元不返券,購物券可通用).小明只有400元錢,他能買到一只隨身聽和一個書包嗎?若能,選擇在哪一家購買更省錢.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】南昌的霧霾引起了小張對環(huán)保問題的重視.一次旅游小張思考了一個問題.從某地到南昌,若乘火車需要小時,若乘汽車需要小時.這兩種交通工具平均每小時二氧化碳的排放量之和為千克,火車全程二氧化碳的排放總量比汽車的多千克,分別求火車和汽車平均每小時二氧化碳的排放量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某縣為了落實中央的強基惠民工程,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨施工則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15,那么余下的工程由甲隊單獨完成還需5

1)這項工程的規(guī)定時間是多少天?

2)已知甲隊每天的施工費用為6500,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為打造書香校園,計劃購進甲、乙兩種規(guī)格的書柜放置新購進的圖書,調(diào)查發(fā)現(xiàn),若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.

(1)甲、乙兩種書柜每個的價格分別是多少元?

(2)若該校計劃購進這兩種規(guī)格的書柜共20個,其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學校至多能夠提供資金4320元,請設(shè)計幾種購買方案供這個學校選擇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面上,矩形ABCD與直徑為QP的半圓K如圖1擺放,分別延長DA和QP交于點O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.讓線段OD及矩形ABCD位置固定,將線段OQ連帶著半圓K一起繞著點O按逆時針方向開始旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°≤α≤60°).

發(fā)現(xiàn):如圖2,當點P恰好落在BC邊上時,求a的值即陰影部分的面積;
拓展:如圖3,當線段OQ與CB邊交于點M,與BA邊交于點N時,設(shè)BM=x(x>0),用含x的代數(shù)式表示BN的長,并求x的取值范圍.
探究:當半圓K與矩形ABCD的邊相切時,直接寫出sinα的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是

查看答案和解析>>

同步練習冊答案