【題目】已知函數(shù)為常數(shù))的圖象經(jīng)過點(diǎn).

1)求,滿足的關(guān)系式;

2)設(shè)該函數(shù)圖象的頂點(diǎn)坐標(biāo)是,當(dāng)的值變化時(shí),求關(guān)于的函數(shù)解析式;

3)若該函數(shù)的圖象不經(jīng)過第三象限,當(dāng)時(shí),函數(shù)的最大值與最小值之差為16,求的值.

【答案】(1)c=2b(2)326

【解析】

1)把點(diǎn)代入函數(shù)即可得到結(jié)論;

2)根據(jù)頂點(diǎn)坐標(biāo)即可求解;

3)把函數(shù)化為,根據(jù)圖像不經(jīng)過第三象限進(jìn)行分類討論進(jìn)行求解.

1)將點(diǎn)代入,

,

2,,

,

,

3,

對稱軸

當(dāng)時(shí),,函數(shù)不經(jīng)過第三象限,則

此時(shí),當(dāng)時(shí),函數(shù)最小值是0,最大值是25

∴最大值與最小值之差為25;(舍去)

當(dāng)時(shí),,函數(shù)不經(jīng)過第三象限,則

當(dāng)時(shí),函數(shù)有最小值

當(dāng)時(shí),函數(shù)有最大值,

當(dāng)時(shí),函數(shù)有最大值

函數(shù)的最大值與最小值之差為16

當(dāng)最大值時(shí),,

,

,

當(dāng)最大值時(shí),,

,

;

綜上所述;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,的直徑,弦于點(diǎn),在的延長線上取一點(diǎn),相切于點(diǎn),連接于點(diǎn).

1)如圖①,若,求的大;

2)如圖②,若為半徑的中點(diǎn),,且,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線y=x2+2mx(m為常數(shù)且m≠0).

1)判斷該拋物線與x軸的交點(diǎn)個(gè)數(shù),并說明理由.

2)若點(diǎn)A-n+5,0),B(n-1,0)在該拋物線上,點(diǎn)M為拋物線的頂點(diǎn),求ABM的面積.

3)若點(diǎn)(2,p),(3,g),(4r)均在該拋物線上,且p<g<r,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),頂點(diǎn)坐標(biāo)且開口向下,則下列結(jié)論:①拋物線經(jīng)過點(diǎn);②;③關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根;④對于任意實(shí)數(shù),總成立。其中結(jié)論正確的個(gè)數(shù)為( )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,矩形中,,點(diǎn)分別在邊上,直線交矩形對角線于點(diǎn),將沿直線翻折,點(diǎn)落在點(diǎn)處,且點(diǎn)在射線上。

Ⅰ.如圖①,當(dāng)時(shí),①求證;②求的長;

Ⅱ.請寫出線段的長的取值范圍,及當(dāng)的長最大時(shí)的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=2,AD=4,對角線AC,BD相交于點(diǎn)O,且E,FG,H分別是AO,BOCODO的中點(diǎn),則下列說法正確的是(

A.EH=HGB.四邊形EFGH是平行四邊形

C.ACBDD.的面積是的面積的2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊中,AB=6,點(diǎn)DBC上,BD=4,點(diǎn)E為邊AC上一動點(diǎn)(不與點(diǎn)C重合),關(guān)于DE的軸對稱圖形為.

1)當(dāng)點(diǎn)FAC上時(shí),求證:DF//AB;

2)設(shè)的面積為S1,的面積為S2,記S=S1-S2,S是否存在最大值?若存在,求出S的最大值;若不存在,請說明理由;

3)當(dāng)B,FE三點(diǎn)共線時(shí)。求AE的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線過點(diǎn),且與直線交于B、C兩點(diǎn),點(diǎn)B的坐標(biāo)為

1)求拋物線的解析式;

2)點(diǎn)D為拋物線上位于直線上方的一點(diǎn),過點(diǎn)D軸交直線于點(diǎn)E,點(diǎn)P為對稱軸上一動點(diǎn),當(dāng)線段的長度最大時(shí),求的最小值;

3)設(shè)點(diǎn)M為拋物線的頂點(diǎn),在y軸上是否存在點(diǎn)Q,使?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ABC=90°,∠BAC30°,將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度得到AED,點(diǎn)B、C的對應(yīng)點(diǎn)分別是ED.

(1)如圖1,當(dāng)點(diǎn)E恰好在AC上時(shí),求∠CDE的度數(shù);

(2)如圖2,若=60°時(shí),點(diǎn)F是邊AC中點(diǎn),求證:四邊形BFDE是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案