已知方程x2pxm0m0)有兩個(gè)相等的實(shí)數(shù)根,則方程x2pxm0的根的情況是(    )

A.    有兩個(gè)不相等的實(shí)數(shù)根       

B.    有兩個(gè)相等的實(shí)數(shù)根

C.    沒(méi)有實(shí)數(shù)根             

D.   有無(wú)實(shí)數(shù)根,不能確定

 

答案:A
提示:

根據(jù)題意可知:=p24m=0,且m0,所以m0。

對(duì)于方程x2pxm0來(lái)說(shuō),=p24m0。

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:解題升級(jí)  解題快速反應(yīng)一典通  九年級(jí)級(jí)數(shù)學(xué) 題型:044

已知方程x2+px+q=0一根為4,拋物線y=x2+px+q過(guò)點(diǎn)(,),拋物線y=ax2+bx+c與拋物線y=x2+px+q有如下關(guān)系:(1)與x軸交點(diǎn)相同,(2)頂點(diǎn)關(guān)于x軸對(duì)稱.求兩個(gè)拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(廣東河源卷)數(shù)學(xué)(帶解析) 題型:解答題

(1)已知方程x2+px+q=0(p2-4q≥0)的兩根為x1、x2,求證:x1+x2=-p,x1·x2=q.(2)已知拋物線y=x2+px+q與x軸交于點(diǎn)A、B,且過(guò)點(diǎn)(―1,―1),設(shè)線段AB的長(zhǎng)為d,當(dāng)p為何值時(shí),d2取得最小值并求出該最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省八里店一中九年級(jí)第二學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

(1)已知方程x2+px+q=0(p2-4q≥0)的兩根為x1、x2,求證:x1+x2=-p,x1·x2=q.(2)已知拋物線y=x2+px+q與x軸交于點(diǎn)A、B,且過(guò)點(diǎn)(―1,―1),設(shè)線段AB的長(zhǎng)為d,當(dāng)p為何值時(shí),d2取得最小值并求出該最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆浙江省九年級(jí)第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(1)已知方程x2+px+q=0(p2-4q≥0)的兩根為x1、x2,求證:x1+x2=-p,x1·x2=q.(2)已知拋物線y=x2+px+q與x軸交于點(diǎn)A、B,且過(guò)點(diǎn)(―1,―1),設(shè)線段AB的長(zhǎng)為d,當(dāng)p為何值時(shí),d2取得最小值并求出該最小值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(廣東河源卷)數(shù)學(xué)(解析版) 題型:解答題

(1)已知方程x2+px+q=0(p2-4q≥0)的兩根為x1、x2,求證:x1+x2=-p,x1·x2=q.(2)已知拋物線y=x2+px+q與x軸交于點(diǎn)A、B,且過(guò)點(diǎn)(―1,―1),設(shè)線段AB的長(zhǎng)為d,當(dāng)p為何值時(shí),d2取得最小值并求出該最小值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案