【題目】如圖(1)是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線剪成四個(gè)均勻的小長(zhǎng)方形,然后按圖(2)形狀拼成一個(gè)正方形.

(1)你認(rèn)為圖(2)中的陰影部分的正方形的邊長(zhǎng)等于多少?

(2)觀察圖(2),你能寫出下列三個(gè)代數(shù)式之間的等量關(guān)系嗎?代數(shù)式:,;

(3)已知:,,求的值.

【答案】(1)m-n;(2)+;(3)25.

【解析】

(1)觀察圖形很容易得出圖b中的陰影部分的正方形的邊長(zhǎng)等于m-n;

(2)觀察圖形可知大正方形的面積(m+n)2,減去陰影部分的正方形的面積(m-n)2等于四塊小長(zhǎng)方形的面積4mn,即(m+n)2=(m-n)2+4mn;

(3)(2)很快可求出(m-n)2=(m+n)2-4mn=49-4×6=25.

:(1)mn;

(2)(m+n)2=(mn)2+4mn;

(3)(mn)2=(m+n)24mn=494×6=25.

故答案為:(1)m-n;(2)+;(3)25.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC,ADE 均是等腰直角三角形,BC DE 相交于 F 點(diǎn),若 AC=AE=1,則四邊形 AEFC 的周長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,△ABC的面積為84,BC=21,現(xiàn)將△ABC沿直線BC向右平移a(0<a<21)個(gè)單位到△DEF的位置.

(1)BC邊上的高;

(2)AB=10,

①求線段DF的長(zhǎng);

②連結(jié)AE,當(dāng)△ABE時(shí)等腰三角形時(shí),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一長(zhǎng)方形花園用來(lái)種植菊花和郁金香,其余作為休息區(qū);

(1)求種植菊花和郁金香的面積;

(2)當(dāng)m,m時(shí),種植菊花和郁金香的面積是多少m2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:

(1)如果∠1=∠B,那么______________,根據(jù)是__________________________;

(2)如果∠3=∠D,那么______________,根據(jù)是__________________________;

(3)如果要使BE∥DF,必須∠1=∠_______,根據(jù)是_________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接五月份全縣中考九年級(jí)體育測(cè)試,小強(qiáng)每天堅(jiān)持引體向上鍛煉,他記錄了某一周每天做引體向上的個(gè)數(shù),如下表:
其中有三天的個(gè)數(shù)被墨汁覆蓋了,但小強(qiáng)已經(jīng)計(jì)算出這組數(shù)據(jù)唯一眾數(shù)是13,平均數(shù)是12,那么這組數(shù)據(jù)的方差是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四邊形 ABCDA=90°,AB=3m,BC=12m,CD=13m,DA=4m

(1)求證:BDCB;

(2)求四邊形 ABCD 的面積;

(3)如圖 2,以 A 為坐標(biāo)原點(diǎn),以 AB、AD所在直線為 x軸、y軸建立直角坐標(biāo)系,

點(diǎn)Py軸上,若 SPBD=S四邊形ABCD, P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫弧交AB于點(diǎn)D,分別以點(diǎn)A、D為圓心,AB長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)E,連接AE,DE,則∠EAD的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y= x2 x+c與y軸交于點(diǎn)A(0,﹣ ),與x軸交于B、C兩點(diǎn),其對(duì)稱軸與x軸交于點(diǎn)D,直線l∥AB且過(guò)點(diǎn)D.

(1)求AB所在直線的函數(shù)表達(dá)式;
(2)請(qǐng)你判斷△ABD的形狀并證明你的結(jié)論;
(3)點(diǎn)E在線段AD上運(yùn)動(dòng)且與點(diǎn)A、D不重合,點(diǎn)F在直線l上運(yùn)動(dòng),且∠BEF=60°,連接BF,求出△BEF面積的最小值.
解:

查看答案和解析>>

同步練習(xí)冊(cè)答案