【題目】如圖,為了測量山頂鐵塔AE的高,小明在27m高的樓CD底部D測得塔頂A的仰角為45°,在樓頂C測得塔頂A的仰角36°52′.已知山高BE56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75

【答案】52

【解析】

根據(jù)樓高和山高可求出EF,繼而得出AF,在RtAFC中表示出CF,在RtABD中表示出BD,根據(jù)CF=BD可建立方程,解出即可.

如圖,過點CCFAB于點F.

設(shè)塔高AE=x,

由題意得,EF=BECD=5627=29m,AF=AE+EF=(x+29)m,

RtAFC,ACF=36°52′,AF=(x+29)m,

,

RtABD,ADB=45°,AB=x+56

BD=AB=x+56,

CF=BD

,

解得:x=52,

答:該鐵塔的高AE52.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒1cm的速度向終點C運動,將△PQC沿BC翻折,點P的對應(yīng)點為點P′,設(shè)Q點運動的時間為t秒,若四邊形QPCP′為菱形,則t的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,動點P從直角梯形ABCD的直角頂點B出發(fā),沿BCDA的順序運動,得到以點P移動的路程x為自變量,△ABP面積y為函數(shù)的圖象,如圖2,則梯形ABCD的面積是( )

A. 104B. 120C. 80D. 112

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的四個頂點分別在正方形EFGH的四條邊上,我們稱正方形EFGH是正方形ABCD的外接正方形.

探究一:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍?如圖,假設(shè)存在正方形EFGH,它的面積是正方形ABCD的2倍.

因為正方形ABCD的面積為1,則正方形EFGH的面積為2,

所以EF=FG=GH=HE=,設(shè)EB=x,則BF=﹣x,

∵Rt△AEB≌Rt△BFC

∴BF=AE=﹣x

在Rt△AEB中,由勾股定理,得

x2+(﹣x)2=12

解得,x1=x2=

∴BE=BF,即點B是EF的中點.

同理,點C,D,A分別是FG,GH,HE的中點.

所以,存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍

探究二:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的3倍?(仿照上述方法,完成探究過程)

探究三:巳知邊長為1的正方形ABCD,   一個外接正方形EFGH,它的面積是正方形ABCD面積的4倍?(填“存在”或“不存在”)

探究四:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的n倍?(n>2)(仿照上述方法,完成探究過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】朗讀者節(jié)目的影響下,某中學(xué)開展了好書伴我成長的讀書活動,為了解3月份七年級300名學(xué)生讀書情況,隨機(jī)調(diào)查了七年50個學(xué)生讀書的冊數(shù),統(tǒng)計數(shù)據(jù)如下表所示:

冊數(shù)

0

1

2

3

4

人數(shù)

4

12

16

17

1

關(guān)于這組數(shù)據(jù),下列說法正確的是( 。

A. 眾數(shù)是 17 B. 平均數(shù)是 2 C. 中位數(shù)是 2 D. 方差是 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點A,C分別在x軸,y軸上,頂點B在第一象限,AB=1.將線段OA繞點O按逆時針方向旋轉(zhuǎn)60°得到線段OP,連接AP,反比例函數(shù)(k≠0)的圖象經(jīng)過P,B兩點,則k的值為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,∠BAC90°,ABAC6DBC邊一點,且BDDC12,以D為一個頂點作正方形DEFG,且DEBC,連接AE,將正方形DEFG繞點D旋轉(zhuǎn)一周,在整個旋轉(zhuǎn)過程中,當(dāng)AE取得最大值時AG的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做等高底三角形,這條邊叫做這個三角形的等底”.

(1)概念理解:

如圖1,在ABC中,AC=6,BC=3,ACB=30°,試判斷ABC是否是等高底三角形,請說明理由.

(2)問題探究:

如圖2,ABC等高底三角形,BC等底,作ABC關(guān)于BC所在直線的對稱圖形得到A'BC,連結(jié)AA′交直線BC于點D.若點BAA′C的重心,求的值.

(3)應(yīng)用拓展:

如圖3,已知l1l2,l1l2之間的距離為2.“等高底ABC等底”BC在直線l1上,點A在直線l2上,有一邊的長是BC倍.將ABC繞點C按順時針方向旋轉(zhuǎn)45°得到A'B'C,A′C所在直線交l2于點D.求CD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點Am,6),B6,1)在反比例函數(shù)圖象上,作直線AB,連接OA、OB

1)求反比例函數(shù)的表達(dá)式和m的值;

2)求AOB的面積;

3)如圖2,E是線段AB上一點,作ADx軸于點D,過點Ex軸的垂線,交反比例函數(shù)圖象于點F,若EFAD,求出點E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案