【題目】如圖,在△ABC中,AB>AC,AD平分∠BAC
(1)尺規(guī)作圖:在AD上標出一點P,使得點P到點B和點C的距離相等(不寫作法,但必須保留作圖痕跡);
(2)過點P作PE⊥AB于點E,PF⊥AC于點F,求證:BE=CF;
(3)若AB=a,AC=b,則BE= ,AE= .
【答案】(1)詳見解析;(2)詳見解析;(3),.
【解析】
(1)作線段BC 的垂直平分線與AD的交點即為所求.
(2)只要證明△PEB≌△PFC即可.
(3)只要證明△PAE≌△PAF,推出AE=AF,設BE=CF=x,則有a-x=b+x,解方程即可解決問題.
(1)①作線段BC的垂直平分線交AD于P.
點P就是所求的點.
(2)連接PB、PC.
∵∠PAB=∠PAF,PE⊥AB,PF⊥AC,
∴PE=PF,
在Rt△PEB和Rt△PFC中,
,
∴△PEB≌△PFC,
∴BE=CF.
(3)設BE=CF=x,
在Rt∴△PAE和Rt△PAF中,
,
∴△PAE≌△PAF,
∴AE=AF,
∴AB-BE=AC+CF,
∴a-x=b+x,
∴x=,
∴BE=,AE=AB-BE=a-=,
故答案為,.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1. ①b2>4ac;②b<0;③y隨x的增大而減。虎苋簦ī2,y1),(5,y2)是拋物線上的兩點,則y1<y2 , 上述4個判斷中,正確的是( )
A.①②④
B.①④
C.①③④
D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題:
①有一條直角邊和斜邊的高對應相等的兩個直角三角形全等;
②有兩邊和其中一邊上高對應相等的兩個三角形全等;
③有兩邊和第三邊上的中線對應相等的兩個三角形全等;
④有兩邊和其中一邊上的中線對應相等的兩個三角形全等.
其中正確的命題有( )A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著中國傳統(tǒng)節(jié)日“端午節(jié)”的臨近,東方紅商場決定開展“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.
(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?
(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖的七邊形ABCDEFG中,AB、ED的延長線相交于O點.若圖中∠1、∠2、∠3、∠4的外角的角度和為220°,則∠BOD的度數(shù)是( 。
A. 400 B. 450 C. 500 D. 600
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑作弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE.若AB=6,BC=8,則△ABE的周長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】合并同類項:
(1)-a-a-a;
(2)3a2-5a2+9a2;
(3)2a2-3ab+4b2-5ab-6b2;
(4)xy-x2y2-xy-x2y2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某江段江水流經(jīng)B,C,D三點拐彎后與原來流向相同,如圖,若∠ABC=120°,∠BCD=80°,則∠EDC=___________°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx-1與x軸、y軸分別交于B、C兩點,OB:OC=.
(1)求B點的坐標和k的值.
(2)若點A(x,y)是第一象限內(nèi)的直線y=kx-1上的一個動點,當點A運動過程中,試寫出△AOB的面積S與x的函數(shù)關系式;
(3)在(2)的條件下,當點A運動到什么位置時,△AOB的面積是.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com