【題目】如圖,在樓AB與樓CD之間有一旗桿EF,從AB頂部A點(diǎn)處經(jīng)過(guò)旗桿頂部E點(diǎn)恰好看到樓CD的底部D點(diǎn),且俯角為45°,從樓CD頂部C點(diǎn)處經(jīng)過(guò)旗桿頂部E點(diǎn)恰好看到樓AB的G點(diǎn),BG=1米,且俯角為30°,已知樓AB高20米,求旗桿EF的高度.(結(jié)果精確到1米)
【答案】旗桿EF的高度約為8米.
【解析】
過(guò)點(diǎn)G作GP⊥CD于點(diǎn)P,與EF相交于點(diǎn)H.設(shè)EF的長(zhǎng)為x米,在Rt△GEH中利用銳角三角函數(shù)的定義可得出GH的長(zhǎng),再由BD=BF+FD=GH+FD即可得出結(jié)論.
過(guò)點(diǎn)G作GP⊥CD于點(diǎn)P,與EF相交于點(diǎn)H.設(shè)EF的長(zhǎng)為x米,
由題意可知,FH=GB=1米,EH=EF﹣FH=(x﹣1)米,
又∵∠BAD=∠ADB=45°,
∴FD=EF=x米,AB=BD=20米,
在Rt△GEH中,∠EGH=30°,
∵tan∠EGH=,即
∴GH=(x﹣1)米,
∵BD=BF+FD=GH+FD,
∴(x﹣1)+x=20,
解得,x≈8米,
答:旗桿EF的高度約為8米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“立定跳遠(yuǎn)”是我市初中畢業(yè)生體育測(cè)試項(xiàng)目之一.測(cè)試時(shí),記錄下學(xué)生立定跳遠(yuǎn)的成績(jī),然后按照評(píng)分標(biāo)準(zhǔn)轉(zhuǎn)化為相應(yīng)的分?jǐn)?shù),滿分10分.其中男生立定跳遠(yuǎn)的評(píng)分標(biāo)準(zhǔn)如下:注:成績(jī)欄里的每個(gè)范圍,含最低值,不含最高值.
成績(jī)(米) | … | 1.80~1.86 | 1.86~1.94 | 1.94~2.02 | 2.02~2.18 | 2.18~2.34 | 2.34~ |
得分(分) | … | 5 | 6 | 7 | 8 | 9 | 10 |
某校九年級(jí)有480名男生參加立定跳遠(yuǎn)測(cè)試,現(xiàn)從中隨機(jī)抽取10名男生測(cè)試成績(jī)(單位:分)如下:
1.96 2.38 2.56 2.04 2.34 2.17 2.60 2.26 1.87 2.32
請(qǐng)完成下列問(wèn)題:
(1)求這10名男生立定跳遠(yuǎn)成績(jī)的極差和平均數(shù);
(2)求這10名男生立定跳遠(yuǎn)得分的中位數(shù)和眾數(shù);
(3)如果將9分(含9分)以上定為“優(yōu)秀”,請(qǐng)你估計(jì)這480名男生中得優(yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知雙曲線y=(k<0)經(jīng)過(guò)直角三角形OAB斜邊OA的中點(diǎn)D,且與直角邊AB相交于點(diǎn)C.若點(diǎn)A的坐標(biāo)為(﹣8,4),則△AOC的面積為( 。
A. 6 B. 12 C. 18 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電器商場(chǎng)銷(xiāo)售進(jìn)價(jià)分別為120元、190元的兩種型號(hào)的電風(fēng)扇,如下表所示是近二周的銷(xiāo)售情況(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)銷(xiāo)售收入進(jìn)貨成本):
銷(xiāo)售時(shí)段 | 銷(xiāo)售數(shù)量 | 銷(xiāo)售收入 | |
種型號(hào) | 種型號(hào) | ||
第一周 | 5 | 6 | 2310 |
第二周 | 8 | 9 | 3540 |
(1)求兩種型號(hào)的電風(fēng)扇的銷(xiāo)售單價(jià);
(2)若商場(chǎng)再購(gòu)進(jìn)這兩種型號(hào)的電風(fēng)扇共120臺(tái),并且全部銷(xiāo)售完,該商場(chǎng)能否實(shí)現(xiàn)這兩批電風(fēng)扇的總利潤(rùn)為8240元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(﹣5,0)、(﹣2,0).點(diǎn)P在拋物線y=﹣2x2+4x+8上,設(shè)點(diǎn)P的橫坐標(biāo)為m.當(dāng)0≤m≤3時(shí),△PAB的面積S的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),已知直線經(jīng)過(guò)點(diǎn)A(-6,0),它與y軸交于點(diǎn)B,點(diǎn)B在y軸正半軸上,且OA=2OB
(1)求直線的函數(shù)解析式
(2)若直線也經(jīng)過(guò)點(diǎn)A(-6,0),且與y軸交于點(diǎn)C,如果ΔABC的面積為6,求C點(diǎn)的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①、圖②均是5×6的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),小正方形的邊長(zhǎng)為1,點(diǎn)A、E、F均在格點(diǎn)上.在圖①、圖②中,只用無(wú)刻度的直尺,在給定的網(wǎng)格中按要求畫(huà)圖,所畫(huà)圖形的頂點(diǎn)均在格點(diǎn)上,不要求寫(xiě)出畫(huà)法.
(1)在圖①中畫(huà)一個(gè)正方形ABCD,使其面積為5.
(2)在圖②中畫(huà)一個(gè)等腰△EFG,使EF為其底邊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F分別在AD,DC上,AE=DF=1,BE與AF相交于點(diǎn)G,點(diǎn)H為BF的中點(diǎn),連接GH,則GH的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:①HE=HF;②EC平分∠DCH;③線段BF的取值范圍為3≤BF≤4;④當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=2.以上結(jié)論中,你認(rèn)為正確的有( )個(gè).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com