在下列方程中為一元一次方程的是(  )
分析:只含有一個(gè)未知數(shù)(元),并且未知數(shù)的指數(shù)是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常數(shù)且a≠0).
解答:解:A、該方程中的未知數(shù)的最高次數(shù)是2,屬于一元二次方程,故本選項(xiàng)錯(cuò)誤;
B、該方程中含有兩個(gè)未知數(shù),屬于二元一次方程,故本選項(xiàng)錯(cuò)誤;
C、該方程不是整式方程,是分式方程,故本選項(xiàng)錯(cuò)誤;
D、該方程符合一元一次方程的定義,故本選項(xiàng)正確;
故選:D.
點(diǎn)評(píng):本題主要考查了一元一次方程的一般形式,只含有一個(gè)未知數(shù),且未知數(shù)的指數(shù)是1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀理解題:一次數(shù)學(xué)興趣小組的活動(dòng)課上,師生有下面一段對(duì)話,請(qǐng)你閱讀完后再解答下面問(wèn)題:
老師:同學(xué)們,今天我們來(lái)探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學(xué)生甲:老師,先去括號(hào),再合并同類(lèi)項(xiàng),行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數(shù)變成了4次,用現(xiàn)有的知識(shí)無(wú)法解答.同學(xué)們?cè)儆^察觀察,看看這個(gè)方程有什么特點(diǎn)?
學(xué)生乙:我發(fā)現(xiàn)方程中x2-x是整體出現(xiàn)的,最好不要去括號(hào)!
老師:很好.如果我們把x2-x看成一個(gè)整體,用y來(lái)表示,那么原方程就變成y2-8y+12=0.
全體同學(xué):咦,這不是我們學(xué)過(guò)的一元二次方程嗎?
老師:大家真會(huì)觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學(xué)生丙:對(duì)啦,再解這兩個(gè)方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學(xué)們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數(shù),這是一種很重要的轉(zhuǎn)化方法.
全體同學(xué):OK!換元法真神奇!
現(xiàn)在,請(qǐng)你用換元法解下列分式方程(
x
x-1
)2-5(
x
x-1
)-6=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

一次數(shù)學(xué)興趣小組的活動(dòng)課上,師生有下面的一段對(duì)話,請(qǐng)你閱讀完后再解答.

老師:同學(xué)們,今天我們來(lái)探索如下方程的解法:

學(xué)生甲:老師,這個(gè)方程先去括號(hào),在合并同類(lèi)項(xiàng),行嗎?

老師:這樣原方程可整理為,次數(shù)變成了4次,用現(xiàn)有的知識(shí)無(wú)法解答.同學(xué)們?cè)儆^察,看看這個(gè)方程有什么特點(diǎn)?

學(xué)生乙:老師,我發(fā)現(xiàn)方程中是整體出現(xiàn)的,最好不要去括號(hào)!

教師:很好,我國(guó)我們把看成一個(gè)整體,用表示,即,那么原方程就變成了

全體學(xué)生:(同學(xué)們都特別高興)噢,這不是我們最熟悉的一元二次方程嗎?

老師:大家真會(huì)觀察和思考,太棒了!顯然一元二次方程的根是,,那么就有

學(xué)生丙:對(duì)啦,再解這兩個(gè)方程,可得原方程的根是,,,.嗬,有這么多解。

老師:同學(xué)們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低方程的次數(shù),這是一種重要的轉(zhuǎn)化方法.

全體學(xué)生:OK,換元法真神奇!

現(xiàn)在,請(qǐng)你用換元法解下列分式方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省濰坊市諸城市繁華中學(xué)九年級(jí)(上)月考數(shù)學(xué)試卷(10月份)(解析版) 題型:解答題

閱讀理解題:一次數(shù)學(xué)興趣小組的活動(dòng)課上,師生有下面一段對(duì)話,請(qǐng)你閱讀完后再解答下面問(wèn)題:
老師:同學(xué)們,今天我們來(lái)探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學(xué)生甲:老師,先去括號(hào),再合并同類(lèi)項(xiàng),行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數(shù)變成了4次,用現(xiàn)有的知識(shí)無(wú)法解答.同學(xué)們?cè)儆^察觀察,看看這個(gè)方程有什么特點(diǎn)?
學(xué)生乙:我發(fā)現(xiàn)方程中x2-x是整體出現(xiàn)的,最好不要去括號(hào)!
老師:很好.如果我們把x2-x看成一個(gè)整體,用y來(lái)表示,那么原方程就變成y2-8y+12=0.
全體同學(xué):咦,這不是我們學(xué)過(guò)的一元二次方程嗎?
老師:大家真會(huì)觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學(xué)生丙:對(duì)啦,再解這兩個(gè)方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學(xué)們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數(shù),這是一種很重要的轉(zhuǎn)化方法.
全體同學(xué):OK!換元法真神奇!
現(xiàn)在,請(qǐng)你用換元法解下列分式方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:《28.3 用一元二次方程解決實(shí)際問(wèn)題》2010年習(xí)題精選(二)(解析版) 題型:解答題

閱讀理解題:一次數(shù)學(xué)興趣小組的活動(dòng)課上,師生有下面一段對(duì)話,請(qǐng)你閱讀完后再解答下面問(wèn)題:
老師:同學(xué)們,今天我們來(lái)探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學(xué)生甲:老師,先去括號(hào),再合并同類(lèi)項(xiàng),行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數(shù)變成了4次,用現(xiàn)有的知識(shí)無(wú)法解答.同學(xué)們?cè)儆^察觀察,看看這個(gè)方程有什么特點(diǎn)?
學(xué)生乙:我發(fā)現(xiàn)方程中x2-x是整體出現(xiàn)的,最好不要去括號(hào)!
老師:很好.如果我們把x2-x看成一個(gè)整體,用y來(lái)表示,那么原方程就變成y2-8y+12=0.
全體同學(xué):咦,這不是我們學(xué)過(guò)的一元二次方程嗎?
老師:大家真會(huì)觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學(xué)生丙:對(duì)啦,再解這兩個(gè)方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根啊.
老師:同學(xué)們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數(shù),這是一種很重要的轉(zhuǎn)化方法.
全體同學(xué):OK!換元法真神奇!
現(xiàn)在,請(qǐng)你用換元法解下列分式方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年河南省南陽(yáng)市書(shū)院中學(xué)九年級(jí)(上)第一學(xué)月數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀理解題:一次數(shù)學(xué)興趣小組的活動(dòng)課上,師生有下面一段對(duì)話,請(qǐng)你閱讀完后再解答下面問(wèn)題:
老師:同學(xué)們,今天我們來(lái)探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學(xué)生甲:老師,先去括號(hào),再合并同類(lèi)項(xiàng),行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數(shù)變成了4次,用現(xiàn)有的知識(shí)無(wú)法解答.同學(xué)們?cè)儆^察觀察,看看這個(gè)方程有什么特點(diǎn)?
學(xué)生乙:我發(fā)現(xiàn)方程中x2-x是整體出現(xiàn)的,最好不要去括號(hào)!
老師:很好.如果我們把x2-x看成一個(gè)整體,用y來(lái)表示,那么原方程就變成y2-8y+12=0.
全體同學(xué):咦,這不是我們學(xué)過(guò)的一元二次方程嗎?
老師:大家真會(huì)觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學(xué)生丙:對(duì)啦,再解這兩個(gè)方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學(xué)們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數(shù),這是一種很重要的轉(zhuǎn)化方法.
全體同學(xué):OK!換元法真神奇!
現(xiàn)在,請(qǐng)你用換元法解下列分式方程

查看答案和解析>>

同步練習(xí)冊(cè)答案