【題目】如圖,點(diǎn)G是正方形ABCD對角線CA的延長線上任意一點(diǎn),以線段AG為邊作一個(gè)正方形AEFG,線段EBGD相交于點(diǎn)H

1)求證:EB=GD

2)判斷EBGD的位置關(guān)系,并說明理由;

3)若AB=2,AG=,求EB的長.

【答案】1)證明:在GADEAB中,GAD=90°+EAD,EAB=90°+EAD,

∴∠GAD=EAB,

AG=AE,AB=AD

∴△GAD≌△EAB,

EB=GD;

2EBGD,理由如下:連接BD,

由(1)得:ADG=ABE,則在BDH中,

DHB=180°-HDB+HBD=180°-90°=90°,

EBGD

3)設(shè)BDAC交于點(diǎn)O,

AB=AD=2RtABD中,DB= ,

EB=GD=

【解析】

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲班56人,其中身高在160厘米以上的男同學(xué)10人,身高在160厘米以上的女同學(xué)3人,乙班80人,其中身高在160厘米以上的男同學(xué)20人,身高在160厘米以上的女同學(xué)8人.如果想在兩個(gè)班的160厘米以上的女生中抽出一個(gè)作為旗手,在哪個(gè)班成功的機(jī)會(huì)大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動(dòng)點(diǎn)在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn),第2次運(yùn)動(dòng)到點(diǎn),第3次運(yùn)動(dòng)到點(diǎn),..按照這樣的運(yùn)動(dòng)規(guī)律,點(diǎn)17次運(yùn)動(dòng)到點(diǎn)(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若順次連接四邊形的各邊中點(diǎn)所得的四邊形是菱形,則該四邊形一定是(  )

A. 矩形 B. 一組對邊相等,另一組對邊平行的四邊形

C. 對角線互相垂直的四邊形 D. 對角線相等的四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如右圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長CBx軸于點(diǎn)A1,作正方形A1B1C1C;延長C1B1x軸于點(diǎn)A2,作正方形A2B2C2C1,…按這樣的規(guī)律進(jìn)行下去,第2017個(gè)正方形的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料,然后解答問題:

我們新定義一種三角形,兩邊的平方和等于第三邊平方的k倍的三角形叫做“k倍三角形”(k為正實(shí)數(shù))

1)理解:根據(jù)“k倍三角形”的定義填空(填“銳角”、“直角”或“鈍角”)

①當(dāng)時(shí),k倍三角形一定是_____________三角形;

②當(dāng)時(shí),k倍三角形一定是______________三角形.

2)探究:當(dāng)時(shí),已知RtABC為“k倍三角形”,且,,求所有滿足條件的k值.

3)拓展:若RtABC是“k倍三角形”,且,,.當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的兩直角邊,平分,則__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△OA1B1,△A1A2B2,△A2A3B3,…,△An1AnBn,都是等腰直角三角形,斜邊OB1,A1B2,…,An1Bn的中點(diǎn)P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)都在函數(shù)的圖象上,則y1+y2+y3+…+yn=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘輪船位于燈塔P南偏西60°方向的A處,它向東航行20海里到達(dá)燈塔P南偏西45°方向上的B處,若輪船繼續(xù)沿正東方向航行,求輪船航行途中與燈塔P的最短距離.(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊答案