【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點,且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長.
科目:初中數學 來源: 題型:
【題目】圖①、圖②均是6×6的正方形網格,每個小正方形的邊長為1,小正方形的頂點稱為格點,點A、B、C、D均在格點上.用直尺在給定的網格中按要求畫圖,所畫圖形的頂點均在格點上,不要求寫畫法.
(1)在圖①中以線段AB為腰畫一個等腰三角形ABM,畫出的△ABM的面積是 .
(2)在圖②中以線段CD為邊畫一個四邊形CDEF,使∠FCD+∠EDC=90°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題提出
(1)如圖(1),在等邊三角形ABC中,點M是BC上的任意一點(不含端點B、C),連接AM,以AM為邊作等邊三角形AMN,連接CN,則∠ACN= °.
類比探究
(2)如圖(2),在等邊三角形ABC中,點M是BC延長線上的任意一點(不含端點C),其他條件不變,(1)中的結論還成立嗎?請說明理由.
拓展延伸
(3)如圖(3),在等腰三角形ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連接AM,以AM為邊作等腰三角形AMN,使AM=MN,連接CN.添加一個條件,使得∠ABC=∠ACN仍成立,寫出你所添加的條件,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c的對稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若點(,y1),(﹣2,y2)均在拋物線上,則y1>y2;⑤5a﹣2b<0;其中正確的個數有( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AM是△ABC的中線,D是線段AM上一點(不與點A重合).DE∥AB交AC于點F,CE∥AM,連結AE.
(1)如圖1,當點D與M重合時,求證:四邊形ABDE是平行四邊形;
(2)如圖2,當點D不與M重合時,(1)中的結論還成立嗎?請說明理由.
(3)如圖3,延長BD交AC于點H,若BH⊥AC,且BH=AM.
①求∠CAM的度數;
②當FH=,DM=4時,求DH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線 與x軸交于點A(﹣1,0),頂點坐標(1,n),與y軸的交點在(0,3),(0,4)之間(包含端點),則下列結論:①abc>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥am2+bm(m為任意實數);⑤一元二次方程 有兩個不相等的實數根,其中正確的有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某次臺風來襲時,一棵大樹樹干AB(假定樹干AB垂直于地面)被刮傾斜15°后折斷倒在地上,樹的項部恰好接觸到地面D(如圖所示),量得樹干的傾斜角為∠BAC=15°,大樹被折斷部分和地面所成的角∠ADC=60°,AD=4米,求這棵大樹AB原來的高度是( )米?(結果精確到個位,參考數據:≈1.4,≈1.7,≈2.4)
A.9B.10C.11D.12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.點P從B出發(fā)沿BA向A運動,速度為每秒1cm,點E是點B以P為對稱中心的對稱點,點P運動的同時,點Q從A出發(fā)沿AC向C運動,速度為每秒2cm,當點Q到達頂點C時,P,Q同時停止運動,設P,Q兩點運動時間為t秒.
(1)當t為何值時,PQ∥BC?
(2)設四邊形PQCB的面積為y,求y關于t的函數關系式;
(3)四邊形PQCB面積能否是△ABC面積的?若能,求出此時t的值;若不能,請說明理由;
(4)當t為何值時,△AEQ為等腰三角形?(直接寫出結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標系中,四邊形OABC是正方形,點A,C 在坐標軸上,點B(,),P是射線OB上一點,將繞點A順時針旋轉90°,得,Q是點P旋轉后的對應點.
(1)如圖(1)當OP = 時,求點Q的坐標;
(2)如圖(2),設點P(,)(),的面積為S. 求S與的函數關系式,并寫出當S取最小值時,點P的坐標;
(3)當BP+BQ = 時,求點Q的坐標(直接寫出結果即可)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com