)如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過(guò)點(diǎn)O作EF∥BC交AB于E,交AC于F,過(guò)點(diǎn)O作OD⊥AC于D.下列四個(gè)結(jié)論:
①∠BOC=90º+∠A; ②以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切;
③設(shè)OD=m,AE+AF=n,則S△AEF=mn; ④EF是△ABC的中位線.
其中正確的結(jié)論是_____________.
①②
解析解答:解:∵在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,
∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,
∴∠OBC+∠OCB=90°-∠A,
∴∠BOC=180°-(∠OBC+∠OCB)=90°+∠A;故①正確;
∵在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,
∴∠EBO=∠OBC,∠FCO=∠OCB,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴EB=EO,F(xiàn)O=FC,
∴EF=EO+FO=BE+CF,
∴以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切,故②正確.
過(guò)點(diǎn)O作OM⊥AB于M,作ON⊥BC于N,連接OA,
∵在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,
∴ON=OD=OM=m,
∴S△AEF=S△AOE+S△AOF=AE?OM+AF?OD=OD?(AE+AF)=mn;故③錯(cuò)誤;
∵EF∥BC,
∴∠BOE=∠CBO,∠COF=∠BCO,
又,∠ABC和∠ACB的平分線相交于點(diǎn)O,
∴∠EBO=∠CBO,∠FCO=∠BCO,
∴∠EBO=∠BOE,∠FCO=∠COF,
∴EB=EO,F(xiàn)C=FO,
假設(shè)EF是△ABC的中位線,則EA=EB,F(xiàn)A=FC,
∴EO=EA,F(xiàn)O=FA,
∴EA+FA=EO+FO=EF,
推出在△AEF中兩邊之和等于第三邊,不成立,所以④結(jié)論不正確
∴其中正確的結(jié)論是①②.
故答案為:①②.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com