如圖,在⊙O的內接四邊形ABCD中,∠BCD=130°,則∠BOD的度數(shù)是______度.
∵四邊形ABCD內接于⊙O
∴∠A=180°-∠C=50°
∴∠BOD=2∠A=100°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O1、⊙O2內切于點A,其半徑分別是6和3,將⊙O2沿直線O1O2平移至兩圓外切時,則點O2移動的長度是(  )
A.3B.6C.12D.6或12

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,半圓O的直徑AB=4,與半圓內切的⊙O1與AB切于C,設AC=x,⊙O1的半徑為y,則y與x的關系式為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某街道兩旁正在安裝漂亮的路燈,經查看路燈圖紙,小紅發(fā)現(xiàn)該路燈的設計可以看作是“相切兩圓”的一部分,部分數(shù)據(jù)如圖所示:⊙O1、⊙O2相切于點C,CD切⊙O1于點C,A、B為路燈燈泡.已知∠AO1O2=∠BO2O1=60°.A、B、C三點距地面MN的距離分別為150
3
cm,180
3
cm,100
3
cm,請根據(jù)以上圖文信息,求:
(1)⊙O1、⊙O2的半徑分別多少cm?
(2)把A、B兩個燈泡看作兩個點,求線段AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,ABCD是⊙O的內接四邊形,DPAC,交BA的延長線于P,求證:AD•DC=PA•BC.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

正六邊形的外接圓的圓心是O,半徑是4cm,則這個正六邊形的邊心距是______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)如圖1,已知△PAC是圓O的內接正三角形,那么∠OAC﹦______;
(2)如圖2,設AB是圓O的直徑,AC是圓的任意一條弦,∠OAC﹦α﹒
①如果α﹦45°,那么AC能否成為圓內接正多邊形的一條邊?若有可能,那么此多邊形是幾邊形?請說明理由﹒
②若AC是圓的內接正n邊形的一邊,則用含n的代數(shù)式表示α應為______﹒

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,以BC為直徑的半圓中,點A、D在半圓周上且AD=DC,若∠ABC=30°,則∠ADC的度數(shù)為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知△ABC中,AB=AC,以AB為直徑的圓O交BC于D,交AC于E,
(1)如圖①,若AB=6,CD=2,求CE的長;
(2)如圖②,當∠A為銳角時,使判斷∠BAC與∠CBE的關系,并證明你的結論;
(3)若②中的邊AB不動,邊AC繞點A按逆時針旋轉,當∠BAC為鈍角時,如圖③,CA的延長線與圓O相交于E.
請問:∠BAC與∠CBE的關系是否與(2)中你得出的關系相同?若相同,請加以證明,若不同,請說明理由.

查看答案和解析>>

同步練習冊答案