【題目】如圖,已知四邊形ABCD中,∠B+∠D=180°,AC平分∠BAD,CE⊥AD,E為垂足.求證:AB+AD=2AE.
【答案】證明見解析.
【解析】
過點(diǎn)C作CH⊥AB,交AB的延長線于點(diǎn)H.利用角平分線性質(zhì)得CH=CE,∠HCA=∠ECA,證△ACH≌△ACE(AAS),得AH=AE.∠HBC=∠D.再證△BHC≌△DEC(AAS),得HB=DE,
所以AB+AD=AB+AE+DE=AB+AE+HB=AH+AE=2AE.
證明:如圖,過點(diǎn)C作CH⊥AB,交AB的延長線于點(diǎn)H.
∵AC平分∠BAD,CE⊥AD,
∴CH=CE,∠HCA=∠ECA(等角的余角相等).
在△ACH和△ACE中,
∴△ACH≌△ACE(AAS),
∴AH=AE.
又∵∠ABC+∠HBC=180°,
∠ABC+∠D=180°,
∴∠HBC=∠D.
在△BHC和△DEC中,
∴△BHC≌△DEC(AAS),
∴HB=DE,
∴AB+AD=AB+AE+DE=AB+AE+HB=AH+AE=2AE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,AM∥CN,點(diǎn) B 為平面內(nèi)一點(diǎn),AB⊥BC 于 B,過 B 作 BD⊥ AM.
(1)求證:∠ABD=∠C;
(2)如圖 2,在(1)問的條件下,分別作∠ABD、∠DBC 的平分線交 DM 于 E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,
①求證:∠ABF=∠AFB;
②求∠CBE 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,階梯圖的每個(gè)臺階上都標(biāo)著一個(gè)數(shù),從下到上的第1個(gè)至第4個(gè)臺階上依次標(biāo)著﹣5,﹣2,1,9,且任意相鄰四個(gè)臺階上數(shù)的和都相等.
嘗試 (1)求前4個(gè)臺階上數(shù)的和是多少?
(2)求第5個(gè)臺階上的數(shù)x是多少?
應(yīng)用 求從下到上前31個(gè)臺階上數(shù)的和.
發(fā)現(xiàn) 試用含k(k為正整數(shù))的式子表示出數(shù)“1”所在的臺階數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)請寫出△ABC各頂點(diǎn)的坐標(biāo);
(2)若把△ABC向上平移2個(gè)單位,再向左平移1個(gè)單位得到△A′B′C′,寫出點(diǎn)A′,B′,C′的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明根據(jù)市自來水公司的居民用水收費(fèi)標(biāo)準(zhǔn),制定了水費(fèi)計(jì)算數(shù)值轉(zhuǎn)換機(jī)的示意圖.(用水量單位:m3,水費(fèi)單位:元)
(1)根據(jù)轉(zhuǎn)換機(jī)程序計(jì)算下列各戶月應(yīng)繳納水費(fèi)
用戶 | 張大爺 | 王阿姨 | 小明家 |
月用水量/m3 | 6 | 15 | 17 |
月應(yīng)繳納水費(fèi)/元 |
|
|
|
(2)當(dāng)x>15時(shí),用含x的代數(shù)式表示水費(fèi) ;
(3)小麗家10月份水費(fèi)是70元,小麗家10月份用水 m3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:y=x2+2x﹣3與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,拋物線C2:y=ax2+bx+c經(jīng)過點(diǎn)B,與x軸的另一個(gè)交點(diǎn)為E(﹣4,0),與y軸交于點(diǎn)D(0,2).
(1)求拋物線C2的解析式;
(2)設(shè)點(diǎn)P為線段AB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合),過點(diǎn)P作x軸的垂線交拋物線C1于點(diǎn)M,交拋物線C2于點(diǎn)N.
①當(dāng)四邊形AMBN的面積最大時(shí),求點(diǎn)P的坐標(biāo);
②當(dāng)CM=DN≠0時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么下列判斷不正確的是( )
A.ac<0
B.a﹣b+c>0
C.b=﹣4a
D.關(guān)于x的方程ax2+bx+c=0的根是x1=﹣1,x2=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=2x2﹣x﹣3.
(1)求函數(shù)圖象的頂點(diǎn)坐標(biāo),與坐標(biāo)軸交點(diǎn)坐標(biāo),并畫出函數(shù)大致圖象;
(2)根據(jù)圖象直接回答:當(dāng)x為何值時(shí),y<0?當(dāng)x為何值時(shí)y>﹣3?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)小慧和小聰沿圖1中的景區(qū)公路游覽.小慧乘坐車速為30km/h的電動(dòng)汽車,早上7:00從賓館出發(fā),游玩后中午12:00回到賓館.小聰騎車從飛瀑出發(fā)前往賓館,速度為20km/h,途中遇見小慧時(shí),小慧恰好游完一景點(diǎn)后乘車前往下一景點(diǎn).上午10:00小聰?shù)竭_(dá)賓館.圖2中的圖象分別表示兩人離賓館的路程s(km)與時(shí)間t(h)的函數(shù)關(guān)系.試結(jié)合圖中信息回答:
(1)小聰上午幾點(diǎn)鐘從飛瀑出發(fā)?
(2)試求線段AB、GH的交點(diǎn)B的坐標(biāo),并說明它的實(shí)際意義.
(3)如果小聰?shù)竭_(dá)賓館后,立即以30km/h的速度按原路返回,那么返回途中他幾點(diǎn)鐘遇見小慧?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com