【題目】在建立平面直角坐標(biāo)系的方格紙中,每個(gè)小方格都是邊長(zhǎng)為1的小正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)P的坐標(biāo)為(﹣1,0),請(qǐng)按要求畫(huà)圖與作答:
(1)把△ABC繞點(diǎn)P旋轉(zhuǎn)180°得△A′B′C.
(2)把△ABC向右平移7個(gè)單位得△A″B″C″.
(3)△A′B′C與△A″B″C″是否成中心對(duì)稱(chēng),若是,找出對(duì)稱(chēng)中心P′,并寫(xiě)出其坐標(biāo).
【答案】
(1)解:如圖,△A'B'C'即為所求
(2)解:如圖,A'B'C'即為所求
(3)解:如圖,P'(2.5,0).
【解析】(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C繞點(diǎn)P旋轉(zhuǎn)180°的對(duì)應(yīng)點(diǎn)A′、B′、C′位置,然后順次連接即可;(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C平移后的對(duì)應(yīng)點(diǎn)A″、B″、C″的位置,然后順次連接即可;(3)利用觀(guān)察對(duì)應(yīng)點(diǎn)的連線(xiàn)即可求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:⊙O上兩個(gè)定點(diǎn)A,B和兩個(gè)動(dòng)點(diǎn)C,D,AC與BD交于點(diǎn)E.
(1)如圖1,求證:EAEC=EBED
(2)如圖2,若 , AD是⊙O的直徑,求證:ADAC=2BDBC
(3)如圖3,若AC⊥BD,點(diǎn)O到AD的距離為2,求BC的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(﹣1,0),如圖所示:拋物線(xiàn)y=ax2+ax﹣2經(jīng)過(guò)點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線(xiàn)的解析式;
(3)在拋物線(xiàn)上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有正方形ABCD,把△ADE順時(shí)針旋轉(zhuǎn)到△ABF的位置.其中AD=4,AE=5,則BF=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們可以通過(guò)類(lèi)比聯(lián)想,引申拓展研究典型題目,可達(dá)到解一題知一類(lèi)的目的,下面是一個(gè)案例,請(qǐng)補(bǔ)充完整
原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說(shuō)明理由.
(1)思路梳理
∵AB=AD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點(diǎn)F、D、G共線(xiàn).
根據(jù) , 易證△AFG≌ , 得EF=BE+DF.
(2)類(lèi)比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿(mǎn)足等量關(guān)系時(shí),仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿(mǎn)足的等量關(guān)系,并寫(xiě)出推理過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們可以通過(guò)類(lèi)比聯(lián)想,引申拓展研究典型題目,可達(dá)到解一題知一類(lèi)的目的,下面是一個(gè)案例,請(qǐng)補(bǔ)充完整
原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說(shuō)明理由.
(1)思路梳理
∵AB=AD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點(diǎn)F、D、G共線(xiàn).
根據(jù) , 易證△AFG≌ , 得EF=BE+DF.
(2)類(lèi)比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿(mǎn)足等量關(guān)系時(shí),仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿(mǎn)足的等量關(guān)系,并寫(xiě)出推理過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構(gòu)成.小敏用后發(fā)現(xiàn),通過(guò)調(diào)節(jié)扣加長(zhǎng)或縮短單層部分的長(zhǎng)度,可以使挎帶的長(zhǎng)度(單層部分與雙層部分長(zhǎng)度的和,其中調(diào)節(jié)扣所占的長(zhǎng)度忽略不計(jì))加長(zhǎng)或縮短.設(shè)單層部分的長(zhǎng)度為xcm,雙層部分的長(zhǎng)度為ycm,經(jīng)測(cè)量,得到如下數(shù)據(jù):
單層部分的長(zhǎng)度x(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
雙層部分的長(zhǎng)度y(cm) | … | 73 | 72 | 71 | … |
(1)根據(jù)表中數(shù)據(jù)的規(guī)律,完成以下表格,并直接寫(xiě)出y關(guān)于x的函數(shù)解析式;
(2)根據(jù)小敏的身高和習(xí)慣,挎帶的長(zhǎng)度為120cm時(shí),背起來(lái)正合適,請(qǐng)求出此時(shí)單層部分的長(zhǎng)度;
(3)設(shè)挎帶的長(zhǎng)度為lcm,求l的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com