【題目】如圖,在邊長為1個單位長度的小正方形組成的8×10網(wǎng)格中,點A,B,C均為網(wǎng)格線的交點.
(1)用無刻度的直尺作BC邊上的中線AD(不寫作法,保留作圖痕跡);
(2)①在給定的網(wǎng)格中,以A為位似中心將△ABC縮小為原來的,得到△AB′C′,請畫出△AB′C′.
②填空:tan∠AD′C'= .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,,將點繞點逆時針旋轉(zhuǎn),點的對應(yīng)點為.的平分線交于,且.若點落在矩形的邊上,則的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B在反比例函數(shù)y=(x>0)的圖象上,點C,D在反比例函數(shù)y=(k>0)的圖象上,AC∥BD∥y軸,已知點A,B的橫坐標分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形中,,分別以所在的直線為軸、軸,建立如圖所示的平面直角坐標系,連接,反比例函數(shù)的圖象經(jīng)過線段的中點,并與矩形的兩邊交于點和點,直線經(jīng)過點和點.
(1)連接、,求的面積;
(2)如圖2,將線段繞點順時針旋轉(zhuǎn)—定角度,使得點的對應(yīng)點好落在軸的正半軸上,連接,作,點為線段上的一個動點,求的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,AE⊥BC于點E,以點B為中心,取旋轉(zhuǎn)角等于∠ABC,把△BAE順時針旋轉(zhuǎn),得到△BA′E′,連接DA′.若∠ADC=60°,∠ADA′=50°,則∠DA′E′的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解七、八年級學生對“防溺水”安全知識的掌握情況,從七、八年級各隨機抽取50名學生進行測試,并對成績(百分制)進行整理、描述和分析.部分信息如下:
a.七年級成績頻數(shù)分布直方圖:
b.七年級成績在這一組的是:70 72 74 75 76 76 77 77 77 78 79
c.七、八年級成績的平均數(shù)、中位數(shù)如下:
年級 | 平均數(shù) | 中位數(shù) |
七 | 76.9 | m |
八 | 79.2 | 79.5 |
根據(jù)以上信息,回答下列問題:
(1)在這次測試中,七年級在80分以上(含80分)的有 人;
(2)表中m的值為 ;
(3)在這次測試中,七年級學生甲與八年級學生乙的成績都是78分,請判斷兩位學生在各自年級的排名誰更靠前,并說明理由;
(4)該校七年級學生有400人,假設(shè)全部參加此次測試,請估計七年級成績超過平均數(shù)76.9分的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:小胖同學遇到這樣一個問題,如圖1,在△ABC中,∠ABC=45°,AB=2,AD=AE,∠DAE=90°,CE=,求CD的長;
小胖經(jīng)過思考后,在CD上取點F使得∠DEF=∠ADB(如圖2),進而得到∠EFD=45°,試圖構(gòu)建“一線三等角”圖形解決問題,于是他繼續(xù)分析,又意外發(fā)現(xiàn)△CEF∽△CDE.
(1)請按照小胖的思路完成這個題目的解答過程.
(2)參考小胖的解題思路解決下面的問題:
如圖3,在△ABC中,∠ACB=∠DAC=∠ABC,AD=AE,∠EAD+∠EBD=90°,求BE:ED.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平面直角坐標系
(1)請在圖中用描點法畫出二次函數(shù)y=-x2+2x+1的圖象;
(2)計算圖象與坐標軸的交點,頂點坐標,寫出對稱軸;
(3)指出當x≤-3時,y隨x的增大而增大還是y隨x的增大而減少;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com