【題目】如圖所示,直線ABx軸于點A,0),交y軸于點B0,),且b滿足

1)求證:OA=OB;

2)如圖1,若C的坐標為(-1,0),且AHBC于點HAHOB于點P,試求點P的坐標;

3)如圖2,連接OH,求證:∠OHP=45°.

【答案】1)詳見解析;(2)點P坐標為(0-1);(3)詳見解析.

【解析】

1)通過非負性先求出ab的值,進而即可得解;

2)通過證明,得到OP=OC=1,進而即可得解;

3)過點O分別作OMCB于點M,作ONHA于點N,通過證明進行求解即可.

1)證明:∵,且

,

,

OA=OB=4

2)解:∵AHBCH,

∴∠OAP+OPA=BPH+OBC=90°

∵∠OPA=BPH

∴∠OAP=OBC

∵∠COB=∠POA90°,OAOB

OP=OC=1

∴點P坐標為

3)解:如下圖,過點O分別作OMCB于點M,作ONHA于點N,連接OH

∵∠OAP=OBCOB=OA

OM=ON

OH=OH

∴∠OHM=OHN

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,點,分別是的中點,分別是的中點,滿足什么條件時,四邊形是菱形?請證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段拋物線:y=﹣x(x﹣5)(0≤x≤5),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉180°得C2,交x軸于點A2;將C2繞點A2旋轉180°得C3,交x軸于點A3;…如此進行下去,得到一“波浪線”,若點P(2018,m)在此“波浪線”上,則m的值為( )

A. 4 B. ﹣4 C. ﹣6 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形OABC的頂點O在坐標原點,頂點A,C在反比例函數(shù)y= 的圖象上,點A的橫坐標為4,點B的橫坐標為6,且平行四邊形OABC的面積為9,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學活動課上,數(shù)學老師出示了如下題目:

如圖①,在四邊形中,是邊的中點,的平分線,

求證:

小聰同學發(fā)現(xiàn)以下兩種方法:

方法1:如圖②,延長、交于點

方法2:如圖③,在上取一點,使,連接、

1)請你任選一種方法寫出這道題的完整的證明過程;

2)如圖④,在四邊形中,的平分線,是邊的中點,,求證:

      

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,矩形OABC的頂點A(﹣6,0),C(0,2).將矩形OABC繞點O順時針方向旋轉,使點A恰好落在OB上的點A1處,則點B的對應點B1的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中點分別是軸、軸上的點且點的坐標是.點在線段上,是靠近點的三等分點.點軸上的點,當是等腰三角形時,點的坐標是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一座立交橋的示意圖(道路寬度忽略不計), A為入口, F,G為出口,其中直行道為AB,CG,EF,且AB=CG=EF ;彎道為以點O為圓心的一段弧,且,所對的圓心角均為90°.甲、乙兩車由A口同時駛入立交橋,均以10m/s的速度行駛,從不同出口駛出. 其間兩車到點O的距離y(m)與時間x(s)的對應關系如圖2所示.結合題目信息,下列說法:甲車在立交橋上共行駛8s;②F口出比從G口出多行駛40m;③甲車從F口出,乙車從G口出;立交橋總長為150m.其中正確的是( )

A. ①②③ B. ①②④ C. ①② D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一次軍事演習中,藍方在一條東西走向的公路上的A處朝正南方向撤退,紅方在公路上的B處沿南偏西60°方向前進實施攔截,紅方行駛1000米到達C處后,因前方無法通行,紅方?jīng)Q定調整方向,再朝南偏西45°方向前進了相同的距離,剛好在D處成功攔截藍方,求攔截點D處到公路的距離(結果不取近似值).

查看答案和解析>>

同步練習冊答案