【題目】已知∠AOB=90°,∠COD=30°.
(1)如圖1,當(dāng)點(diǎn)O、A、C在同一條直線上時,∠BOD的度數(shù)是;

(2)將∠COD從圖1的位置開始,繞點(diǎn)O逆時針方向旋轉(zhuǎn)n°(即∠AOC=n°),且0<n<180.
①如果∠COD的一邊與∠AOB的一邊垂直,則n=
②當(dāng)60<n<90時(如圖2),作射線OM平分∠AOC,射線ON平分∠BOD,試求∠MON的度數(shù)

【答案】
(1)60°
(2)60、90、150,60°
【解析】解:(1)∠BOD=∠AOB﹣∠AOD=∠AOB﹣∠COD=90°﹣30°=60°.

故答案為:60°.(2)①∵0<n<180,

∴分三種情況.

a:點(diǎn)D在射線0B上,∠AOC=∠AOB﹣∠COD=90°﹣30°=60°;

b:點(diǎn)C在射線OB上,∠AOC=∠AOB=90°;

c:點(diǎn)D在AO的延長線上,∠AOC=180°﹣∠COD=180°﹣30°=150°.

綜上得n為60、90、150.

故答案為:60、90、150.②∵∠AOC=n°,OM平分∠AOC,

∴∠AOM= n°,

∠AOD=∠AOC+∠COD=n°+30°,

∠BOD=∠AOD﹣∠AOB=n°+30°﹣90°=n°﹣60°,

∵ON平分∠BOD,

∴∠DON= ∠BOD= ×(n°﹣60°)= n°﹣30°,

∠MON=∠AOD﹣∠AOM﹣∠DON=n°+30°﹣ n°﹣( n°﹣30°)=60°

(1)根據(jù),∠BOD=∠AOB﹣∠AOD=∠AOB﹣∠COD,而∠AOD=∠COD=30°,代入即可求出結(jié)論;
(2)①0<n<180,在旋轉(zhuǎn)的過程中,能夠發(fā)現(xiàn)∠COD的一邊與∠AOB的一邊垂直共有三種情況,分別求出每種情況下旋轉(zhuǎn)的度數(shù)即可;
②∠AOC=n°,OM平分∠AOC,根據(jù)角平分線的定義及角與角之間的關(guān)系,將直接求∠MON得度數(shù)轉(zhuǎn)換成求∠AOM,∠DON的度數(shù),再依照角的關(guān)系即可求得結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知m是方程x2﹣x﹣2=0的一個根,則代數(shù)式m2﹣m﹣3等于( )

A. 2 B. ﹣2 C. 1 D. ﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定一種新運(yùn)算:a*b=a+b,ab=a﹣b,其中a、b為有理數(shù),如a=2,b=1時,a*b=2+1=3,ab=2﹣1=1根據(jù)以上的運(yùn)算法則化簡:a2b*3ab+5a2b4ab,并求出當(dāng)a=5,b=3時多項(xiàng)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動課上,某學(xué)習(xí)小組對有一內(nèi)角為120°的平行四邊形ABCD(∠BAD=120°)進(jìn)行探究:將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點(diǎn)始終與點(diǎn)C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點(diǎn)E,F(xiàn)(不包括線段的端點(diǎn)).

(1)初步嘗試

如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;

(2)類比發(fā)現(xiàn)

如圖2,若AD=2AB,過點(diǎn)C作CH⊥AD于點(diǎn)H,求證:AE=2FH;

(3)深入探究

如圖3,若AD=3AB,探究得:的值為常數(shù)t,則t=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個直角三角形的兩邊長分別為34,則斜邊長為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是∠AOB的邊OB上的一點(diǎn).

(1)過點(diǎn)P畫OB的垂線,交OA于點(diǎn)C,
(2)過點(diǎn)P畫OA的垂線,垂足為H,
(3)線段PH的長度是點(diǎn)P到的距離,線段是點(diǎn)C到直線OB的距離.
(4)因?yàn)橹本外一點(diǎn)到直線上各點(diǎn)連接的所有線中,垂線段最短,所以線段PC、PH、OC這三條線段大小關(guān)系是(用“<”號連接)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c是三角形的三邊,那么代數(shù)式a2﹣2ab+b2﹣c2的值( 。

A. 大于零 B. 等于零 C. 小于零 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點(diǎn)F.
(1)求證:AD=CE;
(2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計,中國水資源總量約為27500億立方米,居世界第六位,其中數(shù)據(jù)27500億用科學(xué)記數(shù)法表示為(
A.2.75×108
B.2.75×1012
C.27.5×1013
D.0.275×1013

查看答案和解析>>

同步練習(xí)冊答案