【題目】如圖所示,在平行四邊形ABCD中,,F是AD的中點,作,垂足E在線段上,連接EF、CF,則下列結(jié)論;;,中一定成立的是______ 把所有正確結(jié)論的序號都填在橫線上
【答案】
【解析】
由在平行四邊形ABCD中,AD=2AB,F(xiàn)是AD的中點,易得AF=FD=CD,繼而證得①∠DCF=∠BCD;然后延長EF,交CD延長線于M,分別利用平行四邊形的性質(zhì)以及全等三角形的判定與性質(zhì)得出△AEF≌△DMF(ASA),得出對應(yīng)線段之間關(guān)系,進而得出答案.
①∵F是AD的中點,
∴AF=FD,
∵在ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴∠DCF=∠BCD,
即∠BCD=2∠DCF;故此選項錯誤;
②延長EF,交CD延長線于M,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠A=∠MDF,
∵F為AD中點,
∴AF=FD,
在△AEF和△DFM中,
,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=FM,故②正確;
③設(shè)∠FEC=x,則∠FCE=x,
∴∠DCF=∠DFC=90°-x,
∴∠EFC=180°-2x,
∴∠EFD=90°-x+180°-2x=270°-3x,
∵∠AEF=90°-x,
∴∠DFE=3∠AEF,故此選項正確.
④∵EF=FM,
∴S△EFC=S△CFM,
∵MC>BE,
∴S△BEC<2S△EFC
故S△BEC=2S△CEF錯誤;
綜上可知:一定成立的是②③,
故答案為:②③.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料:
高斯是德國著名的大科學(xué)家,他最出名的故事就是在他10歲時,小學(xué)老師出了一道算術(shù)難題:計算1+2+3+……+100=?
在其他同學(xué)還在犯難時,卻很快傳來了高斯的聲音:“老師,我已經(jīng)算好了!”
老師很吃驚,高斯解釋道:因為1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像這樣的等于101的組合一共有50組,所以答案很快就可以求出:101×50=5050。
根據(jù)以上的信息,請同學(xué)們:
(1)計算1+3+5+7+…+99的值.
(2)計算2+4+6+8+…+200的值.
(3)用含a和n的式子表示運算結(jié)果:求a+2a+3a+…+na的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請從以下兩個小題中任選一個作答,若多選,則按所選的第一小題計分.
①若單項式﹣xmyn+4 與 5x2y 是同類項,則 nm 的值為____.
②實施西部大開發(fā)戰(zhàn)略是黨中央的重大決策,我國國土面積約為960 萬平方千米,而我國西部地區(qū)的面積占我國國土面積的 ,用科學(xué)記數(shù)法表示我國西部地區(qū)的面積約為_____平方千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2﹣ x﹣2(a≠)的圖象與x軸交于A、B兩點,與y軸交于C點,已知B點坐標(biāo)為(4,0).
(1)求拋物線的解析式;
(2)若點M是線段BC下方的拋物線上一點,求△MBC的面積的最大值,并求出此時M點的坐標(biāo);
(3)試探究:△ABC的外接圓的圓心位置,并求出圓心坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結(jié)論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將背面相同,正面分別標(biāo)有數(shù)字1,2,3,4的四張卡片洗勻后,背面朝上放在桌面上.
(1)從中隨機抽取一張卡片,求該卡片正面上的數(shù)字是偶數(shù)的概率;
(2)先從中隨機抽取一張卡片(不放回),將該卡片正面上的數(shù)字作為十位上的數(shù)字;再隨機抽取一張,將該卡片正面上的數(shù)字作為個位上的數(shù)字,則組成的兩位數(shù)恰好是4的倍數(shù)的概率是多少?請用樹狀圖或列表法加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①兩邊和其中一邊的對角對應(yīng)相等的兩個三角形全等.
②角的對稱軸是角平分線
③兩邊對應(yīng)相等的兩直角三角形全等
④成軸對稱的兩圖形一定全等
⑤到線段兩端距離相等的點在線段的垂直平分線上,
正確的有 個.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, , ,以點為頂點、為腰在第三象限作等腰.
()求點的坐標(biāo).
()如圖, 為軸負半軸上一個動點,當(dāng)點沿軸負半軸向下運動時,以為頂點, 為腰作等腰,過作軸于點,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=4 ,BC=6,∠B=45°,D為BC邊上一動點,將△ABC沿著過點D的直線折疊使點C落在AB邊上,則CD的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com