【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF=∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF=,求BC和BF的長.
【答案】(1)證明見解析;(2)BC=2,BF=.
【解析】
試題分析:(1)連接AE,利用直徑所對的圓周角是直角,從而判定直角三角形,利用直角三角形兩銳角相等得到直角,從而證明∠ABF=90°.(2)利用已知條件證得△AGC∽△ABF,利用比例式求得線段BC和BF的長.
試題解析:(1)證明:連接AE,在⊙O中,∵∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1= ∠CAB.
∵∠CBF= ∠CAB,∴∠1=∠CBF,∴∠CBF+∠2=90°,即∠ABF=90°,∴直線BF是⊙O的切線.(2)解:過點C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,在Rt△AEB中,∠AEB=90°,∴BE=ABsin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE=,∴sin∠2===,cos∠2=== ,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴,∴BF=.
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)悉,合肥軌道交通1號線、2號線建設總投資253.7億元,其中253.7億用科學記數(shù)法表示為_______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】病人按規(guī)定的劑量服用某種藥物,測得服藥后2小時,每毫升血液中的含藥量達到最大值為4毫克,已知服藥后,2小時前每毫升血液中的含藥量y(毫克)與時間x(小時)成正比例,2小時后y與x成反比例(如圖所示).根據(jù)以上信息解答下列問題.
(1)求當0≤x≤2時,y與x的函數(shù)關系式;
(2)求當x>2時,y與x的函數(shù)關系式;
(3)若每毫升血液中的含藥量不低于2毫克時治療有效,則服藥一次,治療疾病的有效時間是多長?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,點E,F分別在AB,AC的延長線上,AE=AF,BF與CE相交于點P,求證:PB=PC,并請直接寫出圖中其他相等的線段.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一列快車從甲地駛往乙地,一列特快車從乙地駛往甲地,快車的速度為100千米/小時,特快車的速度為150千米/小時,甲乙兩地之間的距離為1000千米,兩車同時出發(fā),則圖中折線大致表示兩車之間的距離y(千米)與快車行駛時間t(小時)之間的函數(shù)圖象是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D是AC邊上一點,E是BC延長線上一點,連接DE.
(1)如圖1,若點D是AC中點,且DB=DE. 求證:AD=CE.
(2)如圖2,若點D是AC邊上任意一點,且DB=DE,則(1)中結(jié)論是否成立,如成立,請證明;如不成立,請說明理由.
圖1 圖2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com