如圖是一張簡易活動(dòng)餐桌,現(xiàn)測得OA=OB=30cm,OC=OD=50cm,現(xiàn)要求桌面離地面的高度為40cm,那么兩條桌腿的張角∠COD的大小應(yīng)為     
120°.

試題分析:連接CD,過O作NM⊥CD,交AB于N,交CD于M,推出MN⊥AB,推出△ABO∽△DCO,得出比例式,求出OM,根據(jù)含30度角的直角三角形性質(zhì)求出∠C=∠D=30°,求出∠COM和∠DOM即可.
試題解析:連接CD,過O作NM⊥CD,交AB于N,交CD于M,

∵AB∥CD,
∴MN⊥AB,
∵AB∥CD,
∴△ABO∽△DCO,
,即,
解得:OM=25,
∵CO=50,
∴MO=CO,
∴∠C=30°,
∴∠COM=90°-30°=60°,
同理∠DOM=60°,
∴∠COD=60°+60°=120°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD為臺球桌面,AD=260cm,AB=130cm,球目前在E點(diǎn)位置,AE=60cm.如果小丁瞄準(zhǔn)BC邊上的點(diǎn)F將球打過去,經(jīng)過反彈后,球剛好彈到D點(diǎn)位置.
(1)求證:△BEF∽△CDF;
(2)求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)P是菱形ABCD對角線AC上的一點(diǎn),連接DP并延長DP交邊AB于點(diǎn)E,連接BP并延長BP交邊AD于點(diǎn)F,交CD的延長線于點(diǎn)G.
(1)求證:△APB≌△APD;
(2)已知DF∶FA=1∶2,設(shè)線段DP的長為x,線段PF的長為y.
①求y與x的函數(shù)關(guān)系式;
②當(dāng)x=6時(shí),求線段FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,菱形ABCD中,AC=8,BD=6,將△ABD沿AC方向向右平移到△A′B′D′的位置,若平移距離為2,則陰影部分的面積為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,樂器上的一根弦AB=80cm,兩個(gè)端點(diǎn)A、B固定在樂器板面上,支撐點(diǎn)C是靠近點(diǎn)B的黃金分割點(diǎn),則支撐點(diǎn)C到端點(diǎn)A的距離約為______cm.(
5
≈2.236
,結(jié)果精確到0.01)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,鐵路道口的欄桿短臂長1m,長臂長16m.當(dāng)短臂端點(diǎn)下降0.5m時(shí),長臂端點(diǎn)升高(桿的寬度忽略不計(jì))(   )
A.4mB.6mC.8mD.12m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,為估算學(xué)校的旗桿的高度,身高1.6米的小紅同學(xué)沿著旗桿在地面的影子AB由A向B走去,當(dāng)她走到點(diǎn)C處時(shí),她的影子的頂端正好與旗桿的影子的頂端重合,此時(shí)測得AC=2m,BC=8m,則旗桿的高度是( 。
A.6.4mB.7mC.8mD.9 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將兩塊全等的直角三角形紙片△ABC和△DEF疊放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,如圖,將△DEF繞點(diǎn)D旋轉(zhuǎn),點(diǎn)D與AB的中點(diǎn)重合,DE,DF分別交AC于點(diǎn)M,N,使DM=MN則重疊部分(△DMN)的面積為      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC是一張銳角三角形的硬紙片,AD是邊BC上的高,BC=40 cm,AD=30 cm,從這張硬紙片上剪下一個(gè)長HG是寬HE的2倍的矩形EFGH,使它的一邊EF在BC上,頂點(diǎn)G、H分別在AC、AB上,AD與HG的交點(diǎn)為M. 求矩形的長與寬.

查看答案和解析>>

同步練習(xí)冊答案