【題目】如圖,O為直線AB上一點,∠AOC=58°,OD平分∠AOC,∠DOE=90°.
(1)求出∠BOD的度數;
(2)請通過計算說明:OE是否平分∠BOC.
【答案】(1)∠BOD=151°;(2)見解析;
【解析】
(1)根據∠AOC=58°,OD平分∠AOC求出∠AOD的度數,再根據鄰補角的定義即可得出∠BOD的度數;
(2)根據∠AOC=58°求出∠BOC的度數,再由OD平分∠AOC求出∠DOC的度數,根據∠DOC與∠COE互余,即可得出∠COE的度數,進而可得出結論.
(1)∵∠AOC=58°,OD平分∠AOC,
∴∠AOD=∠AOC =29°,
∴∠BOD=180°﹣∠AOD =180°﹣29°=151°;
(2)OE是∠BOC的平分線.理由如下:
∵∠AOC=58°,
∴∠BOC=122°.
∵OD平分∠AOC,
∴∠DOC=×58°=29°.
∵∠DOE=90°,
∴∠COE=90°﹣29°=61°,
∴∠COE=∠BOC,即OE是∠BOC的平分線.
科目:初中數學 來源: 題型:
【題目】已知A. B兩地果園分別有蘋果30噸和40噸,C. D兩地的農貿市場分別需求蘋果20噸和50噸。已知從A. B兩地到C. D兩地的運價如表:
(1)填空:若從A果園運到C地的蘋果為10噸,則從A果園運到D地的蘋果為___噸,從B果園運到C地的蘋果為___噸,從B果園運到D地的蘋果為___噸,總運輸費為___元;
(2)如果總運輸費為750元時,那么從A果園運到C地的蘋果為多少噸?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】右圖是某商品的標志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A、B、C、D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為( )
A. 5πcm2 B. 10πcm2 C. 15πcm2 D. 20πcm2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.
(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件;
(2)如果購買乙種獎品的件數不超過甲種獎品件數的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在邊長為a的正方形中挖掉一個邊長為b的小正方形(a>b),把余下的部分剪拼成一個矩形(如圖),通過計算圖形(陰影部分)的面積,驗證了一個等式,則這個等式是( )
A.a2-b2=(a+b)(a-b)
B.(a+b)2=a2+2ab+b2
C.(a-b)2=a2-2ab+b2
D.a2-ab=a(a-b)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,是函數的圖像上一點,是y軸上一動點,四邊形ABPQ是正方形(點A.B.P.Q按順時針方向排列)。
(1)求a的值;
(2)如圖②,當時,求點P的坐標;
(3)若點P也在函數的圖像上,求b的值;
(4)設正方形ABPQ的中心為M,點N是函數的圖像上一點,判斷以點P.Q.M.N為頂點的四邊形能否是正方形,如果能,請直接寫出b的值,如果不能,請說明理由。
圖① 圖② 備用圖
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一個正方形ABCD,點P是邊BC上一點.將繞點A逆時針方向旋轉90°得到(點B,P的對應點分別是)
(1)畫出旋轉后所得到的;
(2)聯結,設,,試用表示的面積;
(3)若的面積為18,的面積為5,試求PC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=12,BC=9,點E,G分別為邊AB,AD上的點,若矩形AEFG與矩形ABCD相似,且相似比為,連接CF,則CF= .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com