【題目】如圖,中,,,,對(duì)角線,相交于點(diǎn),將直線繞點(diǎn)順時(shí)針旋轉(zhuǎn),分別交,于點(diǎn),,下列說(shuō)法不正確的是( )
A. 當(dāng)旋轉(zhuǎn)角為時(shí),四邊形一定為平行四邊形
B. 在旋轉(zhuǎn)的過(guò)程中,線段與總相等
C. 當(dāng)旋轉(zhuǎn)角為時(shí),四邊形一定為菱形
D. 當(dāng)旋轉(zhuǎn)角為時(shí),四邊形一定為等腰梯形
【答案】D
【解析】
證明四邊形為平行四邊形即可分析答案.
A、當(dāng)旋轉(zhuǎn)角為90°時(shí),有EF⊥AC,而BA⊥AC,所以AB∥EF,又AF∥EB,所以四邊形ABEF一定為平行四邊形,
B、因?yàn)?/span>AF∥BE,所以∠FAO=∠OCE,又因?yàn)?/span>AO=CA, ∠AOF=∠COE,所以△AOE≌△CEO,所以AF=EC,
C、當(dāng)旋轉(zhuǎn)角為45°,因?yàn)?/span>AB⊥AC,AB=1,BC=,所以AC==2,因?yàn)?/span>OA=OC==1,所以△BAO是等腰直角三角形,所以∠AOB=45°,因?yàn)椤?/span>AOB=45°,所以∠AOF=90°,所以EF=BD,因?yàn)?/span>△AEO≌△CEO,所以OF=0E,根據(jù)對(duì)角線互相垂直平分的四邊是菱形知四邊形BEDF是菱形,
D、由C的結(jié)論知當(dāng)旋轉(zhuǎn)角為45°時(shí),四邊形BEDF是菱形,就不會(huì)是等腰梯形,
綜上答案選擇D項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,分析下列四個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③S△AEF:S△CAB=1:4;④AF2=2EF2.其中正確的結(jié)論有( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)豐草蒜是安徽省特色水果,安徽省的特產(chǎn)之一,其產(chǎn)地長(zhǎng)豐縣是國(guó)家無(wú)公害草莓生產(chǎn)示范基地.小李從長(zhǎng)豐通過(guò)某快遞公司給在北京的姥姥寄一盒草莓,快遞時(shí),他了解到這個(gè)公司除收取每次8元的包裝費(fèi)外,草莓不超過(guò)1千克收費(fèi)22元,超過(guò)1千克,則超出部分按每千克10元加收費(fèi)用.設(shè)該公司從長(zhǎng)豐到北京快寄草莓的費(fèi)用為y(元),所寄草莓為x(千克)
(1)求y與x之間的函數(shù)關(guān)系式;
(2)已知小李給姥嬈快寄了2.5千克草毒,請(qǐng)你求出這次快寄的費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知和的面積相等,點(diǎn)在邊上,交于點(diǎn),,,則的長(zhǎng)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙兩車從A城出發(fā)勻速行駛至B城,在整個(gè)行駛過(guò)程中,甲、乙兩車離開(kāi)A城的距離y(千米)與甲車行駛的時(shí)間t(時(shí))之間的關(guān)系如圖所示,觀察圖象回答下列問(wèn)題:
(1)A,B兩城相距 千米
(2)若兩車同時(shí)出發(fā),乙車將比甲車早到 小時(shí).
(3)乙車的函數(shù)關(guān)系式為 .
(4)甲車出發(fā) 少時(shí)兩車相遇.
(5)當(dāng)乙車行駛過(guò)程中/車出發(fā) 小時(shí),甲、乙兩車相距40千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,點(diǎn)是的中點(diǎn),點(diǎn)、分別是線段及其延長(zhǎng)線上,且,給出下列條件:①;②;③,從中選擇一個(gè)條件使四邊形是菱形,并給出證明,你選擇的條件是________(只填寫(xiě)序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從安陸到武漢市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是100千米,普通列車的行駛路程是高鐵的行駛路程的1.3倍.
(1)求普通列車的行駛路程;
(2)設(shè)計(jì)高鐵的平均速度(千米/時(shí))是普通列車平均速度(千米/時(shí))的2.5倍,且乘坐高鐵所需時(shí)間比乘坐普通列車所需時(shí)間縮短45分鐘,求高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿運(yùn)動(dòng),點(diǎn)在運(yùn)動(dòng)過(guò)程中速度始終為,以點(diǎn)為圓心,線段長(zhǎng)為半徑作圓,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為,當(dāng)與有個(gè)交點(diǎn)時(shí),此時(shí)的值不可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】模型建立:
(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過(guò)點(diǎn)C,過(guò)A作AD⊥ED于D,過(guò)B作BE⊥ED于E.
求證:△BEC≌△CDA.
模型應(yīng)用:
(2)已知直線l1:y=x+4與y軸交與A點(diǎn),將直線l1繞著A點(diǎn)順時(shí)針旋轉(zhuǎn)45°至l2,如圖2,求l2的函數(shù)解析式.
(3)如圖3,矩形ABCO,O為坐標(biāo)原點(diǎn),B的坐標(biāo)為(8,6),A、C分別在坐標(biāo)軸上,P是線段BC上動(dòng)點(diǎn),設(shè)PC=m,已知點(diǎn)D在第一象限,且是直線y=2x-6上的一點(diǎn),若△APD是不以A為直角頂點(diǎn)的等腰Rt△,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com