【題目】如圖,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).請將解題過程填寫完整.
解:∵EF∥AD(已知)
∴∠2=∠3 。---①
又∵∠1=∠2(已知)
∴∠1=∠3( 。----②
∴AB∥______( )----③
∴∠BAC+∠AGD=180°( )----④
∵∠BAC=70°(已知)
∴∠AGD=1800-700=1100
【答案】∠3;兩直線平行,同位角相等;等量代換;DG,內錯角相等,兩直線平行;∠AGD;兩直線平行,同旁內角互補;110°.
【解析】試題分析:由EF與AD平行,利用兩直線平行,同位角相等得到一對角相等,再由已知角相等,等量代換得到一對內錯角相等,利用內錯角相等兩直線平行得到AB與DG平行,利用兩直線平行同旁內角互補得到兩個角互補,即可求出所求角的度數(shù).
解:∵EF∥AD(已知),
∴∠2=∠3(兩直線平行,同位角相等),
又∵∠1=∠2(已知),
∴∠1=∠3(等量代換),
∴AB∥DG(內錯角相等,兩直線平行),
∴∠BAC+∠AGD=180°(兩直線平行,同旁內角互補).
∵∠BAC=70°(已知),
∴∠AGD=110°.
故答案為:∠3;兩直線平行,同位角相等;等量代換;DG,內錯角相等,兩直線平行;∠AGD;兩直線平行,同旁內角互補;110°.
科目:初中數(shù)學 來源: 題型:
【題目】任意給定一個負數(shù),利用計算器不斷進行開立方運算,隨著開立方次數(shù)增加,結果越來越趨向( )
A. 0 B. 1 C. ﹣1 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),將兩塊直角三角板的直角頂點C疊放在一起.
(1)試判斷∠ACE與∠BCD的大小關系,并說明理由;
(2)若∠DCE=30°,求∠ACB的度數(shù);
(3)猜想∠ACB與∠DCE的數(shù)量關系,并說明理由;
(4)若改變其中一個三角板的位置,如圖(2),則第(3)小題的結論還成立嗎?(不需說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中心對稱圖形的性質:對稱中心平分連結兩個___________的線段. 在直角坐標系中,點(x,y)與點___________關于原點成中心對稱.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個實數(shù)的平方根與它的立方根相等,則這個數(shù)是( )
A. 0 B. 正整數(shù) C. 0和1 D. 1
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com