【題目】某乒乓球館使用發(fā)球機進行輔助訓練,出球口在桌面中線端點A處的正上方,假設每次發(fā)出的乒乓球的運動路線固定不變,且落在中線上.在乒乓球運行時,設乒乓球與端點A的水平距離為x(米),與桌面的高度為y(米),運行時間為t(秒),經(jīng)多次測試后,得到如下部分數(shù)據(jù):

t(秒)

0

0.16

0.2

0.4

0.6

0.64

0.8

6

X(米)

0

0.4

0.5

1

1.5

1.6

2

y(米)

0.25

0.378

0.4

0.45

0.4

0.378

0.25


(1)當t為何值時,乒乓球達到最大高度?
(2)乒乓球落在桌面時,與端點A的水平距離是多少?
(3)乒乓球落在桌面上彈起后,y與x滿足y=a(x﹣3)2+k.
①用含a的代數(shù)式表示k;
②球網(wǎng)高度為0.14米,球桌長(1.4×2)米.若球彈起后,恰好有唯一的擊球點,可以將球沿直線扣殺到點A,求a的值.

【答案】
(1)

解:由表格中數(shù)據(jù)可得,t=0.4(秒),乒乓球達到最大高度


(2)

解:由表格中數(shù)據(jù),可得y是x的二次函數(shù),可設y=a(x﹣1)2+0.45,

將(0,0.25)代入,可得:a=﹣ ,

則y=﹣ (x﹣1)2+0.45,

當y=0時,0=﹣ (x﹣1)2+0.45,

解得:x1= ,x2=﹣ (舍去),

即乒乓球與端點A的水平距離是 m


(3)

解:①由(2)得乒乓球落在桌面上時,對應點為:( ,0),

代入y=a(x﹣3)2+k,得( ﹣3)2a+k=0,

化簡得:k=﹣ a;

②∵球網(wǎng)高度為0.14米,球桌長(1.4×2)米,

∴扣殺路線在直線經(jīng)過(0,0)和(1.4,0.14)點,

由題意可得,扣殺路線在直線y= x上,由①得,y=a(x﹣3)2 a,

令a(x﹣3)2 a= x,

整理得:20ax2﹣(120a+2)x+175a=0,

當△=(120a+2)2﹣4×20a×175a=0時符合題意,

解方程得:a1= ,a2= ,

當a1= 時,求得x=﹣ ,不符合題意,舍去;

當a2= 時,求得x= ,符合題意


【解析】(1)利用網(wǎng)格中數(shù)據(jù)直接得出乒乓球達到最大高度時的時間;(2)首先求出函數(shù)解析式,進而求出乒乓球落在桌面時,與端點A的水平距離;(3)①由(2)得乒乓球落在桌面上時,得出對應點坐標,只要利用待定系數(shù)法求出函數(shù)解析式即可;②由題意可得,扣殺路線在直線y= x上,由①得,y=a(x﹣3)2 a,進而利用根的判別式求出a的值,進而求出x的值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某工廠投入生產(chǎn)一種機器的總成本為2000萬元.當該機器生產(chǎn)數(shù)量至少為10臺,但不超過70臺時,每臺成本y與生產(chǎn)數(shù)量x之間是一次函數(shù)關系,函數(shù)y與自變量x的部分對應值如下表:

x(單位:臺)

10

20

30

y(單位:萬元∕臺)

60

55

50


(1)求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)求該機器的生產(chǎn)數(shù)量;
(3)市場調查發(fā)現(xiàn),這種機器每月銷售量z(臺)與售價a(萬元∕臺)之間滿足如圖所示的函數(shù)關系.該廠生產(chǎn)這種機器后第一個月按同一售價共賣出這種機器25臺,請你求出該廠第一個月銷售這種機器的利潤.(注:利潤=售價﹣成本)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=﹣x2+(m﹣1)x+m(m為常數(shù)).
(1)該函數(shù)的圖象與x軸公共點的個數(shù)是
A.0
B.1
C.2
D.1或2
(2)求證:不論m為何值,該函數(shù)的圖象的頂點都在函數(shù)y=(x+1)2的圖象上.
(3)當﹣2≤m≤3時,求該函數(shù)的圖象的頂點縱坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=(x﹣m)2﹣(x﹣m),其中m是常數(shù).
(1)求證:不論m為何值,該拋物線與x軸一定有兩個公共點;
(2)若該拋物線的對稱軸為直線x=
①求該拋物線的函數(shù)解析式;
②把該拋物線沿y軸向上平移多少個單位長度后,得到的拋物線與x軸只有一個公共點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y= 的圖象經(jīng)過點(﹣1,﹣2 ),點A是該圖象第一象限分支上的動點,連結AO并延長交另一分支于點B,以AB為斜邊作等腰直角三角形ABC,頂點C在第四象限,AC與x軸交于點P,連結BP.

(1)k的值為
(2)在點A運動過程中,當BP平分∠ABC時,點C的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是矩形ABCD的對角線,⊙O是△ABC的內切圓,現(xiàn)將矩形ABCD按如圖所示的方式折疊,使點D與點O重合,折痕為FG.點F,G分別在邊AD,BC上,連結OG,DG.若OG⊥DG,且⊙O的半徑長為1,則下列結論不成立的是(
A.CD+DF=4
B.CD﹣DF=2 ﹣3
C.BC+AB=2 +4
D.BC﹣AB=2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中(BC>AC),∠ACB=90°,點D在AB邊上,DE⊥AC于點E.
(1)若 = ,AE=2,求EC的長;
(2)設點F在線段EC上,點G在射線CB上,以F,C,G為頂點的三角形與△EDC有一個銳角相等,F(xiàn)G交CD于點P.問:線段CP可能是△CFG的高線還是中線?或兩者都有可能?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A(a﹣2b,2﹣4ab)在拋物線y=x2+4x+10上,則點A關于拋物線對稱軸的對稱點坐標為(
A.(﹣3,7)
B.(﹣1,7)
C.(﹣4,10)
D.(0,10)

查看答案和解析>>

同步練習冊答案