【題目】如圖,直線l:為常數(shù),且經(jīng)過第四象限.
(1)若直線l與x軸交于點(diǎn),求m的值;
(2)求m的取值范圍:
(3)判斷點(diǎn)是否在直線l上,若不在,判斷在直線l的上方還是下方?請說明理由.
【答案】(1)m=-1;(2);(3)見解析.
【解析】
(1)根據(jù)直線l與x軸交于點(diǎn)(2,0),可以求出m的值;
(2)根據(jù)函數(shù)圖象和題意,可以得到關(guān)于m的不等式組,從而可以得到m的取值范圍;
(3)將x=3代入函數(shù)解析式,可以得到相應(yīng)的函數(shù)值,從而可以判斷點(diǎn)P是否在直線l上,再根據(jù)m的取值范圍可以判斷點(diǎn)P在直線l的上方還是下方.
解:直線l:為常數(shù),且,直線l與x軸交于點(diǎn),
,
解得,;
由題意可得,
m-1<0,
解得,;
當(dāng)時(shí),,
點(diǎn)P不在直線l上,
,
又,
,
,
點(diǎn)P在直線l的下方.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列文字,并完成證明;
已知:如圖,∠1=∠4,∠2=∠3,求證:AB∥CD;
證明:如圖,延長CF交AB于點(diǎn)G
∵∠2=∠3
∴BE∥CF( )
∴∠1= ( )
又∠1=∠4
∴∠4= ( )
∴AB∥CD( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別過反比例函數(shù)y= 的圖象上的點(diǎn)P1(1,y1),P2(2,y2),…Pn(n,yn)…作x軸的垂線,垂足分別為A1 , A2 , …,An…,連接A1P2 , A2P3 , …,An-1Pn , …,再以A1P1 , A1P2為一組鄰邊畫一個(gè)平行四邊形A1P1B1P2 , 以A 2P2 , A2P3為一組鄰邊畫一個(gè)平行四邊形A2P2B2P3 , 點(diǎn)B2的縱坐標(biāo)是.依此類推,則點(diǎn)Bn的縱坐標(biāo)是.(結(jié)果用含n代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+ 與x軸交于A(-3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于拋物線的對稱軸對稱.
(1)求拋物線的解析式,并直接寫出點(diǎn)D的坐標(biāo);
(2)如圖1,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度沿A→B勻速運(yùn)動(dòng),到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng).以AP為邊作等邊△APQ(點(diǎn)Q在x軸上方).設(shè)點(diǎn)P在運(yùn)動(dòng)過程中,△APQ與四邊形AOCD重疊部分的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式;
(3)如圖2,連接AC,在第二象限內(nèi)存在點(diǎn)M,使得以M、O、A為頂點(diǎn)的三角形與△AOC相似.請直接寫出所有符合條件的點(diǎn)M坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,下列說法錯(cuò)誤的是( )
A.∠1與∠2是同旁內(nèi)角B.∠1與∠3是同位角
C.∠1與∠5是內(nèi)錯(cuò)角D.∠1和∠6是同位角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(1,1),B(3,1),C(3,﹣1),D(1,﹣1)構(gòu)成正方形ABCD,以AB為邊做等邊△ABE,則∠ADE和點(diǎn)E的坐標(biāo)分別為( 。
A. 15°和(2,1+)
B. 75°和(2,﹣1)
C. 15°和(2,1+)或75°和(2,﹣1)
D. 15°和(2,1+)或75°和(2,1﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖①,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖②,若∠ABC的角平分線交DC于點(diǎn)E,且BE∥AD,試求出∠C的度數(shù);
(3)如圖③,若∠ABC和∠BCD的角平分線交于點(diǎn)E,試求出∠BEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點(diǎn),AE=CF,連接EF,BF,EF與對角線AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長為( 。
A. 8 B. 8 C. 4 D. 6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com