【題目】閱讀:如圖1,點P(x,y)在平面直角坐標(biāo)中,過點P作PA⊥x軸,垂足為A,將點P繞垂足A順時針旋轉(zhuǎn)角α(0°<α<90°)得到對應(yīng)點P′,我們稱點P到點P′的運動為傾斜α運動.例如:點P(0,2)傾斜30°運動后的對應(yīng)點為P′(1,).

圖形E在平面直角坐標(biāo)系中,圖形E上的所有點都作傾斜α運動后得到圖形E′,這樣的運動稱為圖形E的傾斜α運動.

理解

(1)點Q(1,2)傾斜60°運動后的對應(yīng)點Q′的坐標(biāo)為

(2)如圖2,平行于x軸的線段MN傾斜α運動后得到對應(yīng)線段M′N′,M′N′與MN平行且相等嗎?說明理由.

應(yīng)用:(1)如圖3,正方形AOBC傾斜α運動后,其各邊中點E,F(xiàn),G,H的對應(yīng)點E′,F(xiàn)′,G′,H′構(gòu)成的四邊形是什么特殊四邊形: ;

(2)如圖4,已知點A(0,4),B(2,0),C(3,2),將△ABC傾斜α運動后能不能得到Rt△A′B′C′,且∠A′C′B′為直角,其中點A′,B′,C′為點A,B,C的對應(yīng)點.請求出cosα的值.

【答案】理解(1),1);(2)M′N′與MN平行且相等;應(yīng)用(1)矩形;(2)

【解析】

試題分析:理解:

(1)根據(jù)題目中稱點P到P′的運動為傾α運動的定義來求Q′的坐標(biāo);

(2)根據(jù)題目中圖形E的傾α運動的定義可以判斷M′N′與MN的關(guān)系;

應(yīng)用:

(1)參考理解(2)可得,正方形AOBC旋轉(zhuǎn)后形成菱形,菱形的四邊中點組成的四邊形是矩形;

(2)先求出A′B′=4=OA′,利用三角函數(shù)求得cosα的值.

試題解析:(1)如圖1,過點Q作QA⊥x軸,垂足為A,過旋轉(zhuǎn)Q′作x軸的垂線,垂足為B,在Rt△ABQ′中,∠Q′AB=30°,BQ′=1,由勾股定理得AB=,∴OB=,∴Q′的坐標(biāo)為(,1).故答案為:(,1);

(2)M′N′與MN平行且相等,理由如下:

如圖2,分別過點M、N作MA⊥x軸于點A,NB⊥x軸于點B,∴MN∥AB,且MN=AB,由定義可知,M′A∥N′B,M′A=N′B,∴四邊M′ABN′是平行四邊形,∴M′N′∥AB,M′N′=AB,∴M′N′與MN平行且相等.

應(yīng)用:(1)由理解(2)可得,正方形AOBC旋轉(zhuǎn)后形成菱形,菱形的四邊中點組成的四邊形是矩形.

故答案為:矩形;

(2)能,cosα=.如圖3,設(shè)AB的中點為D,∴D點坐標(biāo)為(1,2),∴CD∥x軸,且CD=2,∵D點對應(yīng)點D′是A′B′中點,C′D′=2,∴C′D′=A′B′,∴A′B′=4=OA′,∵∠α=∠OA′B′,∴cosα=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點P(,)和直線y=kx+b,則點P到直線y=kx+b的距離證明可用公式d=計算.

例如:求點P(﹣1,2)到直線y=3x+7的距離.

解:因為直線y=3x+7,其中k=3,b=7.

所以點P(﹣1,2)到直線y=3x+7的距離為:d====

根據(jù)以上材料,解答下列問題:

(1)求點P(1,﹣1)到直線y=x﹣1的距離;

(2)已知⊙Q的圓心Q坐標(biāo)為(0,5),半徑r為2,判斷⊙Q與直線的位置關(guān)系并說明理由;

(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡:(2x3y)2(y+3x)(3xy).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形的兩邊長分別為4cm7cm,且它的周長大于16cm,則第三邊長為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC、△ADE是等邊三角形,B、C、D在同一直線上.

求證:
(1)CE=AC+DC;
(2)∠ECD=60°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=x2+1的圖象的頂點坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】絕對值大于2且小于5的所有整數(shù)的和是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點P(3,2),則點P關(guān)于y軸的對稱點P1的坐標(biāo)是 , 點P關(guān)于原點O的對稱點P2的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 “農(nóng)民也可以報銷醫(yī)療費了!”這是某市推行新型農(nóng)村醫(yī)療合作的成果.村民只要每人每年交10元錢,就可以加入合作醫(yī)療,每年先由自己支付醫(yī)療費,年終時可得到按一定比例返回的返回款.這一舉措極大地增強(qiáng)了農(nóng)民抵御大病風(fēng)險的能力.小華與同學(xué)隨機(jī)調(diào)查了他們鄉(xiāng)的一些農(nóng)民,根據(jù)收集到的數(shù)據(jù)繪制了以下的統(tǒng)計圖.

根據(jù)以上信息,解答以下問題:

(1)本次調(diào)查了多少村民,被調(diào)查的村民中,有多少人參加合作醫(yī)療得到了返回款;

(2)該鄉(xiāng)若有10 000村民,請你估計有多少人參加了合作醫(yī)療?要使兩年后參加合作醫(yī)療的人數(shù)增加到9 680人,假設(shè)這兩年的年增長率相同,求這個年增長率.

查看答案和解析>>

同步練習(xí)冊答案