(2009•朝陽(yáng)區(qū)二模)在一周內(nèi),體育老師對(duì)九年級(jí)男生進(jìn)行了5次一千米跑測(cè)試,若想了解他們的成績(jī)是否穩(wěn)定,老師需知道每個(gè)人5次測(cè)試成績(jī)的( )
A.平均數(shù)
B.方差
C.中位數(shù)
D.眾數(shù)
【答案】分析:方差體現(xiàn)數(shù)據(jù)的穩(wěn)定性,集中程度,波動(dòng)性大;方差越小,數(shù)據(jù)越穩(wěn)定.若想了解他們的成績(jī)是否穩(wěn)定,老師需知道每個(gè)人5次測(cè)試成績(jī)的方差.
解答:解:由于方差反映數(shù)據(jù)的波動(dòng)大小,故想了解他們的成績(jī)是否穩(wěn)定,老師需知道每個(gè)人5次測(cè)試成績(jī)的方差.
故選B.
點(diǎn)評(píng):此題主要考查統(tǒng)計(jì)的有關(guān)知識(shí),主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計(jì)量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對(duì)統(tǒng)計(jì)量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年北京市朝陽(yáng)區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•朝陽(yáng)區(qū)二模)如圖,點(diǎn)A在x軸的負(fù)半軸上,OA=4,AB=OB=.將△ABO繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△A1B1O,再繼續(xù)旋轉(zhuǎn)90°,得到△A2B2O.拋物線y=ax2+bx+3經(jīng)過(guò)B、B1兩點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)B2是否在此拋物線上,請(qǐng)說(shuō)明理由;
(3)在該拋物線上找一點(diǎn)P,使得△PBB2是以BB2為底的等腰三角形,求出所有符合條件的點(diǎn)P的坐標(biāo);
(4)在該拋物線上,是否存在兩點(diǎn)M、N,使得原點(diǎn)O是線段MN的中點(diǎn)?若存在,直接寫(xiě)出這兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年北京市朝陽(yáng)區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:選擇題

(2009•朝陽(yáng)區(qū)二模)將拋物線y=x2+3向左平移1個(gè)單位長(zhǎng)度后,得到的拋物線的解析式是( )
A.y=x2+4
B.y=x2+2
C.y=(x-1)2+3
D.y=(x+1)2+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年廣東省廣州市中考數(shù)學(xué)模擬試卷三(解析版) 題型:選擇題

(2009•朝陽(yáng)區(qū)二模)某種禽流感病毒變異后的直徑為0.00000012米,將這個(gè)數(shù)寫(xiě)成科學(xué)記數(shù)法是( )
A.1.2×10-5
B.0.12×10-6
C.1.2×10-7
D.12×10-8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年北京市延慶縣中考數(shù)學(xué)二模試卷(解析版) 題型:選擇題

(2009•朝陽(yáng)區(qū)二模)某種禽流感病毒變異后的直徑為0.00000012米,將這個(gè)數(shù)寫(xiě)成科學(xué)記數(shù)法是( )
A.1.2×10-5
B.0.12×10-6
C.1.2×10-7
D.12×10-8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年北京市朝陽(yáng)區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•朝陽(yáng)區(qū)二模)在△ABC中,點(diǎn)D在AC上,點(diǎn)E在BC上,且DE∥AB,將△CDE繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)得到△CD’E’(使∠BCE′<180°),連接AD′、BE′,設(shè)直線BE′與AC交于點(diǎn)O.

(1)如圖1,當(dāng)AC=BC時(shí),AD′:BE′的值為_(kāi)_____;
(2)如圖2,當(dāng)AC=5,BC=4時(shí),求AD′:BE′的值;
(3)在(2)的條件下,若∠ACB=60°,且E為BC的中點(diǎn),求△OAB面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案