【題目】如圖,AB切⊙O于點B,OA=2,∠OAB=30°,弦BC∥OA,劣弧 的弧長為 . (結(jié)果保留π)

【答案】 π
【解析】解:連接OB,OC,
∵AB為圓O的切線,
∴∠ABO=90°,
在Rt△ABO中,OA=2,∠OAB=30°,
∴OB=1,∠AOB=60°,
∵BC∥OA,
∴∠OBC=∠AOB=60°,
又OB=OC,
∴△BOC為等邊三角形,
∴∠BOC=60°,
則劣弧 長為 = π.
故答案為: π
連接OB,OC,由AB為圓的切線,利用切線的性質(zhì)得到三角形AOB為直角三角形,根據(jù)30度所對的直角邊等于斜邊的一半,由OA求出OB的長,且∠AOB為60度,再由BC與OA平行,利用兩直線平行內(nèi)錯角相等得到∠OBC為60度,又OB=OC,得到三角形BOC為等邊三角形,確定出∠BOC為60度,利用弧長公式即可求出劣弧BC的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CBDB , 坡面AC的傾斜角為45°為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i= :3若新坡角下需留3米寬的人行道,問離原坡角(A點處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請回答下列問題:
(1)敘述三角形中位線定理,并運用平行四邊形的知識證明;
(2)運用三角形中位線的知識解決如下問題:如圖,在四邊形ABCD中,ADBCE、F分別是ABCD的中點,求證:EF= AD+BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC中,ACB=90°,CA=CBDAC上一點,EBC的延長線上,且CE=CD,試猜想BDAE的關(guān)系,并說明你猜想的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段.在連接兩點所得的所有線段中任取一條線段,取到長度為 的線段的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形ABC中,AB=AC,D,E分別為邊AB,AC上的點,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,則∠DEA=( 。

A. 40° B. 50° C. 60° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點B順時針旋轉(zhuǎn)60°,得到△BDE,連接DC交AB于點F,則△ACF與△BDF的周長之和為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB與CE交于F,ED與AB,BC,分別交于M,H.
(1)求證:CF=CH;
(2)如圖2,△ABC不動,將△EDC繞點C旋轉(zhuǎn)到∠BCE=45°時,試判斷四邊形ACDM是什么四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義運算:ab=a(1﹣b).若a,b是方程x2﹣x+ m=0(m<0)的兩根,則bb﹣aa的值為(
A.0
B.1
C.2
D.與m有關(guān)

查看答案和解析>>

同步練習(xí)冊答案