【題目】如圖,已知正方形ABCD,E是AB延長線上一點,F是DC延長線上一點,且滿足BF=EF,將線段EF繞點F順時針旋轉(zhuǎn)90°得FG,過點B作FG的平行線,交DA的延長線于點N,連接NG.
求證:BE=2CF;
試猜想四邊形BFGN是什么特殊的四邊形,并對你的猜想加以證明.
【答案】詳見解析.
【解析】試題分析:(1)過F作FH⊥BE于點H,可證明四邊形BCFH為矩形,可得到BH=CF,且H為BE中點,可得BE=2CF;
(2)由條件可證明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可證得四邊形BFGN為菱形.
試題解析:
證明:過F作FH⊥BE于H點,
在四邊形BHFC中,∠BHF=∠CBH=∠BCF=90°,
所以四邊形BHFC為矩形,
∴CF=BH,
∵BF=EF,FH⊥BE,
∴H為BE中點,
∴BE=2BH,
∴BE=2CF;
猜想:四邊形BFGN是菱形.
證明:
∵將線段EF繞點F順時針旋轉(zhuǎn)90°得FG,
∴EF=GF,∠GFE=90°,
∴∠EFH+∠BFH+∠GFB=90°
∵BN∥FG,
∴∠NBF+∠GFB=180°,
∴∠NBA+∠ABC+∠CBF+∠GFB=180°,
∵∠ABC=90°,
∴∠NBA+∠CBF+∠GFB=180°90°=90°,
由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,
∴∠EFH=90°∠GFB∠BFH=90°∠GFB∠CBF=∠NBA,
由BHFC是矩形可得HF=BC,
∵BC=AB,∴HF=AB,
在△ABN和△HFE中, ,
∴△ABN≌△HFE,
∴NB=EF,
∵EF=GF,
∴NB=GF,
又∵NB∥GF,
∴NBFG是平行四邊形,
∵EF=BF,∴NB=BF,
∴平行四邊NBFG是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】彩虹服裝店用元購進件襯衣,很快全部售完.服裝店老板以每件元的價格為標準,將超出的記為正數(shù),不足的記為負數(shù),記錄如下:,,,,,,,(單位:元).他賣完這件襯衣后是盈利還是虧損?盈利(或虧損)了多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某自行車廠計劃每天生產(chǎn)輛自行車,但由于各種原因,實際每天生產(chǎn)量與計劃生產(chǎn)量相比有所差異,下表是該廠某一周的實際生產(chǎn)情況(以計劃產(chǎn)量為標準,超產(chǎn)記為正數(shù),不足記為負數(shù).單位:輛):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
與標準產(chǎn)量的差 |
()根據(jù)表格,這一周該廠實際生產(chǎn)自行車多少輛?
()若該廠實行“每日計件工資制”,每生產(chǎn)一輛自行車可得元,若超額完成任務,則超出部分每輛額外獎勵元;若未完成任務,則每少生產(chǎn)一輛扣元,那么該廠工人這一周的工資總額是多少元?
()若將()中的“每日計件工資制”改為“每周計件工資制”,其他條件不變,在此方式下該廠工人一周的工資總額與“每日計件工資制”相比是減少還是增加了?減少或增加了多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛慢車和一輛快車沿相同路線從A地到B地,所行駛的路程與時間的函數(shù)圖象如圖所示,下列說法正確的有()個
①快車追上慢車需6小時
②慢車比快車早出發(fā)2小時
③快車速度為46km/h
④慢車速度為46km/h
⑤AB兩地相距828km
⑥快車14小時到達B地
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,對角線AC與BD交于點O,下列各組條件,其中不能判定四邊形ABCD是平行四邊形的是( 。
A. OA=OC,OB=ODB. OA=OC,AB∥CD
C. AB=CD,OA=OCD. ∠ADB=∠CBD,∠BAD=∠BCD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是明代數(shù)學家程大位的《算法統(tǒng)宗》中的一個問題,其大意為:有一群人分銀子,如果每人分七兩,則剩余四兩;如果每人分九兩,則還差八兩(注:明代時1斤= 16兩,故有“半斤八兩”這個成語.則下列設未知數(shù)列方程正確的序號是____.
①設這群人人數(shù)為x,根據(jù)題意得7x- 4=9x+ 8;
②設這群人人數(shù)為x,根據(jù)題意得7x+ 4= 9x一8;
③設所分銀子的數(shù)量為x兩,根據(jù)題意得=
④設所分銀子的數(shù)量為x兩,根據(jù)題意得=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知直線y=x+3與x軸交于點A,與y軸交于點B,將直線在x軸下方的部分沿x軸翻折,得到一個新函數(shù)的圖象(圖中的“V形折線”).
(1)類比研究函數(shù)圖象的方法,請列舉新函數(shù)的兩條性質(zhì),并求新函數(shù)的解析式;
(2)如圖2,雙曲線y=與新函數(shù)的圖象交于點C(1,a),點D是線段AC上一動點(不包括端點),過點D作x軸的平行線,與新函數(shù)圖象交于另一點E,與雙曲線交于點P.
①試求△PAD的面積的最大值;
②探索:在點D運動的過程中,四邊形PAEC能否為平行四邊形?若能,求出此時點D的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)分別填入相應的集合里.
﹣4,﹣|﹣|,0,,﹣3.14,2019,﹣(+5),+1.88,
(1)正數(shù)集合:{ _____…};(2)負數(shù)集合:{__________…};
(3)分數(shù)集合:{_______…};(4)非負整數(shù)集合:{_______…}.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校對七年級全體學生進行了期中測試,并隨機抽取了部分學生的測試成績作為樣本進行分析,繪制成了下面的條形圖和扇形圖(圖1和圖2均不完整)請根據(jù)圖中所給的信息,解答下列問題:
(1)求抽取學生的人數(shù),請將表示成績類別為“中”的條形圖補充完整;
(2)求扇形圖中表示成績類別為“優(yōu)“的扇形所占的百分數(shù);
(3)如果該校七年級共有300人參加期中測試,請估計成績在“良”及“良”以上的學生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com