【題目】已知,正方形,

1)如圖1,當(dāng)點(diǎn)分別在邊,上,連接,求證:

2)如圖2,點(diǎn)分別在邊上,且,當(dāng)點(diǎn)分別在,上,連接,請(qǐng)?zhí)骄烤段,,之間滿足的數(shù)量關(guān)系,并加以證明.

1 2

【答案】(1)詳見解析;(2)

【解析】

1)由題意可知△ADF≌△ABG,可得到AFAGDFBG,∠DAF=∠BAG,通過證明G、BE三點(diǎn)共線,可推出∠EAG=∠EAF,從而證得△EAG≌△EAF,進(jìn)而證得EGEF,把EF轉(zhuǎn)化到EGBGBEDFBE,即可得證.
2)把△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABH,證得△EAH≌△EAF,把EF轉(zhuǎn)化到EH,然后利用BNDM證明四邊形BMDN為平行四邊形,得出∠ABE=∠FDM,從而得出∠EBH=∠ABH+∠ABE=∠ADF+∠MDN90°,由得到

1)如圖,將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得△ABG,


∴△ADF≌△ABG
AFAG,DFBG,∠DAF=∠BAG
∵正方形ABCD
∴∠D=∠BAD=∠ABE90°,ABAD
∴∠ABG=∠D90°,即G、B、C在同一直線上
∵∠EAF45°
∴∠DAF+∠BAE90°45°45°
∴∠EAG=∠BAG+∠BAE=∠DAF+∠BAE45°
即∠EAG=∠EAF
△EAG△EAF中,

∴△EAG≌△EAFSAS
EGEF
BEDFBEBGEG
EFBEDF
2,證明如下:
如圖,將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得△ABH,

∴△ADF≌△ABH
AFAH,DFBH,∠DAF=∠BAH,∠ADF=∠ABH
∵∠EAF45°
∴∠DAF+∠BAE90°45°45°
∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE45°
即∠EAH=∠EAF
△EAH△EAF中,

∴△EAH≌△EAFSAS
EHEF
BNDM,BNDM
∴四邊形BMDN是平行四邊形
∴∠ABE=∠MDN
∴∠EBH=∠ABH+∠ABE=∠ADF+∠MDN=∠ADM90°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB6,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)30°后得到△A1BC1,則陰影部分的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A在第一象限,點(diǎn)C在第四象限,點(diǎn)Bx軸的正半軸上.∠OAB=90°且OA=ABOB,OC的長(zhǎng)分別是一元二次方程的兩個(gè)根(OBOC).

1)求點(diǎn)A和點(diǎn)B的坐標(biāo).

2)點(diǎn)P是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)OB重合),過點(diǎn)P的直線ly軸平行,直線l交邊OA或邊AB于點(diǎn)Q,交邊OC或邊BC于點(diǎn)R.設(shè)點(diǎn)P的橫坐標(biāo)為t,線段QR的長(zhǎng)度為m.已知t=4時(shí),直線l恰好過點(diǎn)C.當(dāng)0t3時(shí),求m關(guān)于t的函數(shù)關(guān)系式.

3)當(dāng)m=3.5時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2bxc開口向上,與x軸交于點(diǎn)AB,與y軸交于點(diǎn)C

(1) 如圖1,若A (10)、C (0,3)且對(duì)稱軸為直線x2,求拋物線的解析式

(2) 在(1)的條件下,如圖2,作點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)D,連接AD、BD,在拋物線上是否存在點(diǎn)P,使∠PAD=∠ADB,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由

(3) 若直線lymxn與拋物線有兩個(gè)交點(diǎn)M、NMN的左邊),Q為拋物線上一點(diǎn)(不與M、N重合),過點(diǎn)QQH平行于y軸交直線l于點(diǎn)H,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點(diǎn)D在AC上,將△ABD繞點(diǎn)B沿順時(shí)針方向旋轉(zhuǎn)90°后,得到△CBE.

(1)求∠DCE的度數(shù);

(2)若AB=4,CD=3AD,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要修一個(gè)圓形噴水池,在池中心豎直安裝一根水管,水管的頂端安一個(gè)噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達(dá)到最高,高度為3m,水柱落地處離池中心3m,水管應(yīng)多長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAC的平分線交△ABC的外接圓于點(diǎn)D,交BC于點(diǎn)P,∠APB75°,∠BAC90°,BD4,求△ABC的外接圓的半徑及∠ADB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有A、B兩個(gè)轉(zhuǎn)盤,其中轉(zhuǎn)盤A被分成4等份,轉(zhuǎn)盤B被分成3等份,并在每一份內(nèi)標(biāo)上數(shù)字,F(xiàn)甲、乙兩人同時(shí)各轉(zhuǎn)動(dòng)其中一個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤停止后(當(dāng)指針指在邊界線上時(shí)視為無效,重轉(zhuǎn)),若將A轉(zhuǎn)盤指針指向的數(shù)字記為xB轉(zhuǎn)盤指針指向的數(shù)字記為y,從而確定點(diǎn)P的坐標(biāo)為Px,y);記S=x+y。

1】請(qǐng)用列表或畫樹狀圖的方法寫出所有可能得到的點(diǎn)P的坐標(biāo);

2】李剛為甲、乙兩人設(shè)計(jì)了一個(gè)游戲:當(dāng)S<6時(shí)甲獲勝,否則乙獲勝。你認(rèn)為這個(gè)游戲公平嗎?對(duì)誰有利?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線yx與雙曲線yk0)的一個(gè)交點(diǎn)為P,n).將直線向上平移b00)個(gè)單位長(zhǎng)度后,與x軸,y軸分別交于點(diǎn)A,點(diǎn)B,與雙曲線的一個(gè)交點(diǎn)為Q.若AQ3AB,則b____

查看答案和解析>>

同步練習(xí)冊(cè)答案