如圖,OA、OC是⊙O的半徑,OA=1,且OC⊥OA,點D在弧AC上,弧AD=2弧CD,在OC求一點P,使PA+PD最小,并求這個最小值.

解:延長AO交⊙O于B,聯(lián)結(jié)BD交OC于點P,

則點P為所求       

            聯(lián)結(jié)AD

            ∵AB為⊙O的直徑

∴∠ADB=90°       

∵OC⊥OA,弧AD=2弧CD

∴∠ABD=30°     

∵OA=1

∴AB=2

∴BD=                           

即PA+PD最小值為

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,OA、OC是⊙O的半徑,OA=1,且OC⊥OA,點D在弧AC上,弧AD=2弧CD,在OC求一點P,使PA+PD最小,并求這個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

 (本小題6分) 如圖,OA、OC是⊙O的半徑,OA=1,且OC⊥OA,點D在弧AC上,弧AD=2弧CD,在OC求一點P,使PA+PD最小,并求這個最小值.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本小題6分) 如圖,OA、OC是⊙O的半徑,OA=1,且OC⊥OA,點D在弧AC上,弧AD=2弧CD,在OC求一點P,使PA+PD最小,并求這個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年北京一六三中初三上學期模擬數(shù)學卷 題型:解答題

(本小題6分) 如圖,OA、OC是⊙O的半徑,OA=1,且OC⊥OA,點D在弧AC上,弧AD=2弧CD,在OC求一點P,使PA+PD最小,并求這個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆北京一六三中初三上學期模擬數(shù)學卷 題型:解答題

 (本小題6分) 如圖,OA、OC是⊙O的半徑,OA=1,且OC⊥OA,點D在弧AC上,弧AD=2弧CD,在OC求一點P,使PA+PD最小,并求這個最小值.

 

查看答案和解析>>

同步練習冊答案