如圖,?ABCD中,P是CD上的一點(diǎn),且AP和BP分別平分∠DAB和∠CBA,過點(diǎn)P作PQ∥AD,交AB于點(diǎn)Q.下列結(jié)論不一定成立的是( 。
分析:由?ABCD中,P是CD上的一點(diǎn),且AP和BP分別平分∠DAB和∠CBA,易證得∠PAB+∠PBA=90°,即可得AP⊥BP;
由AP和BP分別平分∠DAB和∠CBA,過點(diǎn)P作PQ∥AD,易證得△ADP與△BCP以及△PAQ與△BPQ是等腰三角形,繼而可得B、D正確,C錯(cuò)誤.
解答:解:A、∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DAB+∠CBA=180°,
∵AP和BP分別平分∠DAB和∠CBA,
∴∠PAB+∠PBA=
1
2
(∠DAB+∠CBA)=90°,
∴∠APB=90°,
即AP⊥BP;故正確;
B、∵AB∥CD,
∴∠DPA=∠PAQ,
∵∠DAP=∠PAQ,
∴∠DAP=∠DPA,
∴AD=PD,故正確;
C、同理:PC=BC,
當(dāng)不能證得△PBC是等邊三角形.
故錯(cuò)誤;
D、∵PQ∥AD,
∴∠APQ=∠DAP,
∵∠DAP=∠PAQ,
∴∠PAQ=∠APQ,
∴AQ=PQ,
同理:PQ=BQ,
∴AQ=BQ,
即Q是AB的中點(diǎn),故正確.
故選C.
點(diǎn)評(píng):此題考查了平行四邊形的性質(zhì)、等腰三角形的判定與性質(zhì)以及垂直的定義.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,?ABCD中,O為AC、BD的中點(diǎn),則圖中全等的三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,?ABCD中,AB⊥AC,AB=1,BC=
5
,對(duì)角線AC,BD相交于O點(diǎn),將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn),下列說法不正確的是( 。
A、當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF一定為平行四邊形
B、在旋轉(zhuǎn)的過程中,線段AF與EC總相等
C、當(dāng)旋轉(zhuǎn)角為45°時(shí),四邊形BEDF一定為菱形
D、當(dāng)旋轉(zhuǎn)角為45°時(shí),四邊形ABEF一定為等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,?ABCD中,E是CD的延長(zhǎng)線上一點(diǎn),BE與AD交于點(diǎn)F,DE=
12
DC.  若△DEF的面積為2,則?ABCD的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,?ABCD中,點(diǎn)E是AD的中點(diǎn),延長(zhǎng)CE交BA的延長(zhǎng)線于點(diǎn)F.
求證:AB=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•浙江)如圖,?ABCD中,對(duì)角線AC和BD交于點(diǎn)O,過O作OE∥BC交DC于點(diǎn)E,若OE=5cm,則AD的長(zhǎng)為
10
10
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案