精英家教網(wǎng)在△ABC中,AD、BE分別是三角形的中線,且交于G點,則
AGGD
的值為
 
分析:由三角形重心的概念可知,再根據(jù)重心的性質(zhì)即可求得
AG
GD
解答:解:∵AD、BE分別是三角形的中線,
∴G是△ABC的重心,
∴AG=2GD,
AG
GD
=2.
故答案為:2.
點評:此題考查了重心的概念和性質(zhì):三角形的重心是三角形三條中線的交點,且重心到頂點的距離是它到對邊中點的距離的2倍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AD,BE分別是∠A,∠B的角平分線,O是AD與BE的交點,若C,D,O,E四點共圓,DE=3,則△ODE的內(nèi)切圓半徑為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AD是角平分線,E是AD上的一點,且CE=CD.
求證:
AB
AC
=
AD
AE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•松江區(qū)一模)已知:如圖,在△ABC中,AD是邊BC上的中線,點E在線段BD上,且BE=ED,過點B作BF∥AC,交線段AE的延長線于點F.
(1)求證:AC=3BF;
(2)如果AE=
3
ED,求證:AD•AE=AC•BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•海珠區(qū)一模)如圖,在△ABC中,AD、CE分別是BC、AB邊上的高,DE=3,BE=4,BC=6,則AC=
4.5
4.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點H,已知EH=EB=3,AE=4,則CH的長是
1
1

查看答案和解析>>

同步練習(xí)冊答案