【題目】如圖,已知,射線分別和直線交于點(diǎn),射線分別和直線交于點(diǎn),點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)與三點(diǎn)不重合),設(shè),,.
(1)如果點(diǎn)在兩點(diǎn)之間運(yùn)動(dòng)時(shí),之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(2)如果點(diǎn)在兩點(diǎn)之外運(yùn)動(dòng)時(shí),之間有何數(shù)量關(guān)系?(只需寫出結(jié)論,不必說(shuō)明理由)
【答案】(1)γ=α+β(2)詳見解析
【解析】分析:(1)過(guò)點(diǎn)P作P作PF∥l1因?yàn)?/span>l1//l2則l2//PF,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等即可證明γ=α+β,(2) 過(guò)點(diǎn)P作P作PF∥l1因?yàn)?/span>l1//l2則l2//PF,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等進(jìn)行角度轉(zhuǎn)化再根據(jù)三角形外角性質(zhì)可證明∠β=∠γ+∠α,同理可得,當(dāng)點(diǎn)P在AN上運(yùn)動(dòng)時(shí),∠α=∠γ+∠β.
(1)證明:過(guò)點(diǎn)P作l3//l1,
∵l1//l2,
∴l2//l3,
∴γ=α+β.
(2)點(diǎn)P在射線AN上時(shí):γ=α-β,
點(diǎn)P在射線BM上時(shí):γ=β-α.
證明:過(guò)點(diǎn)P作l3//l1,
∵l1//l2,
∴l2//l3,
∴γ=α+β.
詳解:(1)∠γ=α+∠β,
理由:過(guò)點(diǎn)P作PF∥l1(如圖1),
∵l1∥l2,
∴PF∥l2,
∴∠α=∠DPF,∠β=∠CPF,
∴∠γ=∠DPF+∠CPF=α+∠β,
(2)當(dāng)點(diǎn)P在MB上運(yùn)動(dòng)時(shí)(如圖2),
∵l1∥l2,
∴∠β=∠CFD,
∵∠CFD是△DFP的外角,
∴∠CFD=∠α+∠γ,
∴∠β=∠γ+∠α,
同理可得,當(dāng)點(diǎn)P在AN上運(yùn)動(dòng)時(shí),∠α=∠γ+∠β.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在ABCD中,E,F(xiàn)分別是邊AD,BC上的點(diǎn),且AE=CF,直線EF分別交BA的延長(zhǎng)線、DC的延長(zhǎng)線于點(diǎn)G,H,交BD于點(diǎn)O.
(1)求證:△ABE≌△CDF;
(2)連接DG,若DG=BG,則四邊形BEDF是什么特殊四邊形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如3+=(1+)2.善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n)2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把類似a+b的式子化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n)2,用含m、n的式子分別表示a、b,得:a= ,b= ;
(2)利用探索的結(jié)論,找一組正整數(shù)a、b、m、n (a、b都不超過(guò)20)
填空: + =( + )2;
(3)若a+6=(m+n)2,且a、m、n均為正整數(shù),求a的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校住校生宿舍有大小兩種寢室若干間,據(jù)統(tǒng)計(jì)該校高一年級(jí)男生740人,使用了55間大寢室和50間小寢室,正好住滿;女生730人,使用了大寢室50間和小寢室55間,也正好住滿.求該校的大小寢室每間各住多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過(guò)點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)D為AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明你的理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?請(qǐng)說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.
(1)求證△BED≌△CFD.
(2)已知EC=6,AC=10,求BE.
(3)當(dāng)∠C=45°時(shí),判斷△DFC的周長(zhǎng)與線段AC長(zhǎng)度的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB∥DC,∠B=90°,F為DC上一點(diǎn),且FC=AB,E為AD上一點(diǎn),EC交AF于點(diǎn)G.
(1)求證:四邊形ABCF是矩形;
(2)若ED=EC,求證:EA=EG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將ABCD的邊AB延長(zhǎng)到點(diǎn)E,使BE=AB,連接DE,交邊BC于點(diǎn)F.
(1)求證:△BEF≌△CDF.
(2)連接BD,CE,若∠BFD=2∠A,求證四邊形BECD是矩形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com