精英家教網 > 初中數學 > 題目詳情
(2004•大連)如圖,拋物線y=-x2+5x+n經過點A(1,0),與y軸交于點B.
(1)求拋物線的解析式;
(2)P是y軸正半軸上一點,且△PAB是以AB為腰的等腰三角形,試求P點坐標.

【答案】分析:(1)將A點的坐標代入拋物線中,即可得出二次函數的解析式;
(2)本題要分兩種情況進行討論:
①PB=AB,先根據拋物線的解析式求出B點的坐標,即可得出OB的長,進而可求出AB的長,也就知道了PB的長,由此可求出P點的坐標;
②PA=AB,此時P與B關于x軸對稱,由此可求出P點的坐標.
解答:解:(1)∵拋物線y=-x2+5x+n經過點A(1,0)
∴n=-4
∴y=-x2+5x-4;

(2)∵拋物線的解析式為y=-x2+5x-4,
∴令x=0,則y=-4,
∴B點坐標(0,-4),AB=
①當PB=AB時,PB=AB=
∴OP=PB-OB=-4.
∴P(0,-4)
②當PA=AB時,P、B關于x軸對稱,
∴P(0,4)
因此P點的坐標為(0,-4)或(0,4).
點評:本題考查了二次函數解析式的確定、等腰三角形的構成等知識點,主要考查學生分類討論、數形結合的數學思想方法.
練習冊系列答案
相關習題

科目:初中數學 來源:2004年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2004•大連)如圖,拋物線y=-x2+5x+n經過點A(1,0),與y軸交于點B.
(1)求拋物線的解析式;
(2)P是y軸正半軸上一點,且△PAB是以AB為腰的等腰三角形,試求P點坐標.

查看答案和解析>>

科目:初中數學 來源:2004年全國中考數學試題匯編《圓》(13)(解析版) 題型:解答題

(2004•大連)如圖,⊙O的直徑DF與弦AB交于點E,C為⊙O外一點,CB⊥AB,G是直線CD上一點,∠ADG=∠ABD.
求證:AD•CE=DE•DF;
說明:(1)如果你經歷反復探索,沒有找到解決問題的方法,請你把探索過程中的某種思路過程寫出來(要求至少寫3步);
(2)在你經歷說明(1)的過程之后,可以從下列①、②、③中選取一個補充或更換已知條件,完成你的證明.
注意:選、偻瓿勺C明得8分;選取②完成證明得6分;選、弁瓿勺C明得4分.
①∠CDB=∠CEB;
②AD∥EC;
③∠DEC=∠ADF,且∠CDE=90°.

查看答案和解析>>

科目:初中數學 來源:2004年遼寧省大連市中考數學試卷(解析版) 題型:選擇題

(2004•大連)如圖,直線y=kx+b與x軸交于點(-4,0),則y>0時,x的取值范圍是( )

A.x>-4
B.x>0
C.x<-4
D.x<0

查看答案和解析>>

科目:初中數學 來源:2004年遼寧省大連市中考數學試卷(解析版) 題型:選擇題

(2004•大連)如圖,A、B、C是⊙O上的三點,∠BAC=30°,則∠BOC的大小是( )

A.30°
B.60°
C.90°
D.45°

查看答案和解析>>

同步練習冊答案