要使代數(shù)式
a-2
3
a+3
2
的和小于
5
6
a,a的取值范圍是(  )
A、a>-
1
2
B、a<
1
2
C、不存在
D、一切實(shí)數(shù)
分析:根據(jù)題意列出不等式,求出a的取值范圍即可.
解答:解:由題意可得
a-2
3
+
a+3
2
5
6
a,
去分母得,2(a-2)+3(a+3)<5a,
去括號(hào)得,2a-4+3a+9<5a,
移項(xiàng)、合并同類(lèi)項(xiàng)得,5<0,故a的取值范圍不存在.
故選C.
點(diǎn)評(píng):本題考查了不等式的性質(zhì):
(1)不等式的兩邊同時(shí)加上或減去同一個(gè)數(shù)或整式不等號(hào)的方向不變;
(2)不等式的兩邊同時(shí)乘以或除以同一個(gè)正數(shù)不等號(hào)的方向不變;
(3)不等式的兩邊同時(shí)乘以或除以同一個(gè)負(fù)數(shù)不等號(hào)的方向改變.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案