【題目】點D是等邊三角形ABC外一點,且DB=DC,∠BDC=120°,將一個三角尺60°角的頂點放在點D上,三角尺的兩邊DP,DQ分別與射線AB,CA相交于E,F兩點.
(1)當EF∥BC時,如圖①所示,求證:EF=BE+CF.
(2)當三角尺繞點D旋轉到如圖②所示的位置時,線段EF,BE,CF之間的上述數量關系是否成立?如果成立,請說明理由;如果不成立,寫出EF,BE,CF之間的數量關系,并說明理由.
(3)當三角尺繞點D繼續(xù)旋轉到如圖③所示的位置時,(1)中的結論是否發(fā)生變化?如果不變化,直接寫出結論;如果變化,請直接寫出EF,BE,CF之間的數量關系.
【答案】(1)見解析;(2)結論仍然成立.理由見解析;(3)結論發(fā)生變化.EF=CF-BE.
【解析】
(1)根據△ABC是等邊三角形知道AB=AC,∠ABC=∠ACB=60°,而DB=DC,∠BDC=120°,這樣可以得到△DCF和△BED是直角三角形,由于EF∥BC,可以證明△AEF是等邊三角形,也可以證明△BDE≌△CDF,可以得到DE=DF,由此進一步得到
DE=DF∠BDE=∠CDF=30°,這樣可以得到BE=DE=DF=CF,而△DEF是等邊三角形,所以題目的結論就可以證明出來了;(2)結論仍然成立.如圖,在AB的延長線上取點F’,使BF’=CF,連接DF’,根據(1)的結論可以證明△DCF≌△DBF’,根據全等三角形的性質可以得到DF=DF’,∠BDF’=∠CDF,又∠BDC=120°,∠EDF=60°,可以得到:∠EDF’=∠CDF=60°,由此可以證明△EDF’≌△EDF,從而證明題目的結論;(3)結論發(fā)生變化. EF=BE-CF.如圖,在射線AB上取點F′,使BF′=CF,連接DF′.由(1)得△DCF≌△DBF′(SAS).根據全等三角形的性質可以得到DF=DF′,∠BDF′=∠CDF.又因為∠BDC=120°,∠EDF=60°,可以得到∠FDB+∠CDF=60°,∠FDB+∠BDF′=∠FDF′=120°,所以∠EDF′=∠EDF=60°,由此可得△EDF′≌△EDF(SAS),從而證明題目的結論EF=EF′=BF′- BE=CF- BE。
(1)證明:∵△ABC是等邊三角形,
∴AB=AC,∠ABC=∠ACB=60°.
∵DB=DC,∠BDC=120°,
∴∠DBC=∠DCB=30°.
∴∠DBE=∠DBC+∠ABC=90°,
∠DCF=∠DCB+∠ACB=90°.
∵EF∥BC,∴∠AEF=∠ABC=60°,
∠AFE=∠ACB=60°.∴AE=AF.
∴BE=AB-AE=AC-AF=CF.
又∵DB=DC,∠DBE=∠DCF=90°,
∴△BDE≌△CDF.
∴DE=DF,∠BDE=∠CDF=(120°-60°)=30°.
∴BE=DE=DF=CF.
∵∠EDF=60°,∴△DEF是等邊三角形,
即DE=DF=EF.
∴BE+CF=DE+DF=EF,
即EF=BE+CF.
(2)解:結論仍然成立.
理由如下:如圖,在射線AB上取點F′,
使BF′=CF,連接DF′.
由(1)得∠DBE=∠DCF=90°,
則∠DBF′=∠DCF=90°.
又∵BD=CD,
∴△DCF≌△DBF′(SAS).
∴DF=DF′,∠BDF′=∠CDF.
又∵∠BDC=120°,∠EDF=60°,
∴∠EDB+∠CDF=60°.
∴∠EDB+∠BDF′=∠EDF′=60°.
∴∠EDF′=∠EDF.
又∵DE=DE,
∴△EDF′≌△EDF(SAS).
∴EF=EF′=BE+BF′=BE+CF.
(3)解:結論發(fā)生變化.EF=CF-BE.
理由:在射線AB上取點F′,
使BF′=CF,連接DF′.
由(1)得∠DBA=∠DCF=90°,
則∠DBF′=∠DCF=90°.
又∵BD=CD,
∴△DCF≌△DBF′(SAS).
∴DF=DF′,∠BDF′=∠CDF.
又∵∠BDC=120°,∠EDF=60°,
∴∠FDB+∠CDF=60°.
∴∠FDB+∠BDF′=∠FDF′=120°.
∴∠EDF′=∠EDF=60°.
又∵DE=DE,DF=DF′,
∴△EDF′≌△EDF(SAS).
∴EF=EF′=BF′- BE=CF- BE。
科目:初中數學 來源: 題型:
【題目】如圖,是由一些大小相同且棱長為1的小正方體組合成的簡單幾何體.
(1)該幾何體的立體圖如圖所示,請在下面方格紙中分別畫出它的左視圖和俯視圖(請涂上陰影):
(2)這個簡單幾何體的表面積是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在數軸上點A表示的數a、點B表示數b,a、b滿足|a﹣40|+(b+8)2=0.點O是數軸原點.
(1)點A表示的數為 ,點B表示的數為 ,線段AB的長為 .
(2)若點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,請在數軸上找一點C,使AC=2BC,則點C在數軸上表示的數為 .
(3)現有動點P、Q都從B點出發(fā),點P以每秒1個單位長度的速度向終點A移動;當點P移動到O點時,點Q才從B點出發(fā),并以每秒3個單位長度的速度向右移動,且當點P到達A點時,點Q就停止移動,設點P移動的時間為t秒,問:當t為多少時,P、Q兩點相距4個單位長度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學校開展“書香校園,誦讀經典”活動,隨機抽查了部分學生,對他們每天的課外閱讀時長進行統(tǒng)計,并將結果分為四類:設每天閱讀時長為t分鐘,當0<t≤20時記為A類,當20<t≤40時記為B類,當40<t≤60時記為C類,當t>60時記為D類,收集的數據繪制成如下兩幅不完整的統(tǒng)計圖,請根據圖中提供的信息,解答下列問題:
(1)這次共抽取了 名學生進行調查統(tǒng)計,扇形統(tǒng)計圖中的D類所對應的扇形圓心角為 °;
(2)將條形統(tǒng)計圖補充完整;
(3)若該校共有2000名學生,請估計該校每天閱讀時長超過40分鐘的學生約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),連接DE、BF,P是DE的中點,連接AP。將△AEF繞點A逆時針旋轉。
(1)如圖①,當△AEF的頂點E、F恰好分別落在邊AB、AD時,則線段AP與線段BF的位置關系為 ,數量關系為 。
(2)當△AEF繞點A逆時針旋轉到如圖②所示位置時,證明:第(1)問中的結論仍然成立。
(3)若AB=3,AE=1,則線段AP的取值范圍為 。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在解決問題:已知a=,求2a2﹣8a+1的值,他是這樣分析與解的:
∵a===2﹣
∴a﹣2=﹣
∴(a﹣2)2=3,a2﹣4a+4=3
∴a2﹣4a=﹣1
∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1
請你根據小明的分析過程,解決如下問題:
(1)化簡+++…+
(2)若a=,求4a2﹣8a+1的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,對角線 AC、BD交于點 M,點E在邊BC上,且∠DAE=∠DCB,聯結AE,AE與BD交于點F.
(1)求證:;
(2)連接DE,如果BF=3FM,求證:四邊形ABED是平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=﹣x+4的圖象與反比例函數y=(k為常數,且k≠0)的圖象交于A(1,a),B兩點.
(1)求反比例函數的表達式及點B的坐標;
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,用正方形是墩壘石梯,下圖分別表示壘到一、二階梯時的情況,那么照這樣壘下去
一級 二級
①填出下表中未填的兩空,觀察規(guī)律。
階梯級數 | 一級 | 二級 | 三級 | 四級 |
石墩塊數 | 3 | 9 |
②到第n級階梯時,共用正方體石墩_______________塊(用n的代數式表示)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com