如圖,某商標(biāo)是由邊長均為2的正三角形、正方形、正六邊形的金屬薄片鑲嵌而成的鑲嵌圖案.
(1)求這個鑲嵌圖案中一個正三角形的面積;
(2)如果在這個鑲嵌圖案中隨機確定一個點O,那么點O落在鑲嵌圖案中的正方形區(qū)域的概率為多少?(結(jié)果保留二位小數(shù))
.解:(1)∵圖案中正三角形的邊長為2,∴高為 .(1分)
∴正三角形的面積為×2×  =  .  (2分)
(2)∵圖中共有11個正方形, ∴圖中正方形的面積和為11×(2×2)=44.  (3分)
∵圖中共有2個正六邊形,∴圖中正六邊形的面積和為2×(6××2×  )=12 .(4分)∵圖中共有10個正三角形,∴圖中正三角形的面積和為10  .
∵鑲嵌圖形的總面積為44+10  +12 =44+22  (5分)≈81.4,
∴點O落在鑲嵌圖案中正方形區(qū)域的概率為  (7分)≈0.54.(8分)
答:點O落在鑲嵌圖案中正方形區(qū)域的概率為0.54.(“≈”寫為“=”不扣分)解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,某商標(biāo)是由邊長均為2的正三角形、正方形、正六邊形的金屬薄片鑲嵌而成的精英家教網(wǎng)鑲嵌圖案.
(1)求這個鑲嵌圖案中一個正三角形的面積;
(2)如果在這個鑲嵌圖案中隨機確定一個點O,那么點O落在鑲嵌圖案中的正方形區(qū)域的概率為多少?(結(jié)果保留二位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•錦江區(qū)一模)如圖,某商標(biāo)是由邊長均為2的正三角形、正方形、正六邊形的金屬薄片鑲嵌而成的鑲嵌圖案.如果在這個鑲嵌圖案中隨機確定一個點O,那么點O落在鑲嵌圖案中的正方形區(qū)域的概率為
0.54
0.54

2
=1.414,
3
=1.732
.結(jié)果保留二位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,某商標(biāo)是由邊長均為2的正三角形、正方形、正六邊形的金屬薄片鑲嵌而成的鑲嵌圖案.

(1)求這個鑲嵌圖案中一個正三角形的面積;

(2)如果在這個鑲嵌圖案中隨機確定一個點O,那么點O落在鑲嵌圖案中的正方形區(qū)域的概率為多少?(結(jié)果保留二位小數(shù))

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(四川樂山卷)數(shù)學(xué) 題型:解答題

如圖,某商標(biāo)是由邊長均為2的正三角形、正方形、正六邊形的金屬薄片鑲嵌而成的鑲嵌圖案.
(1)求這個鑲嵌圖案中一個正三角形的面積;
(2)如果在這個鑲嵌圖案中隨機確定一個點O,那么點O落在鑲嵌圖案中的正方形區(qū)域的概率為多少?(結(jié)果保留二位小數(shù))

查看答案和解析>>

同步練習(xí)冊答案