已知AB=2,C是AB上一點,四邊形ACDE和四邊形CBFG,都是正方形,設BC=x,
(1)AC=______;
(2)設正方形ACDE和四邊形CBFG的總面積為S,用x表示S的函數(shù)表達式為S=______.
(3)總面積S有最大值還是最小值?這個最大值或最小值是多少?
(4)總面積S取最大值或最小值時,點C在AB的什么位置?
由題意
(1)AC=2-x(0≤x≤2);

(2)S=AC2+AB2
=(2-x)2+x2
=2(x-1)2+2,

(3)由圖象可知:當x=1時,s最小=2;當x=0或x=2時,s最大=4;

(4)當x=1時,C點恰好在AB的中點上,
當x=0時,C點恰好在B處,
當x=2時,C點恰好在A處.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

若拋物線y=x2-(2m+4)+m2-10與x軸交于A(x1,0),B(x2,0).頂點為C.
(1)求m的范圍;
(2)若AB=2
2
,求拋物線的解析式;
(3)若△ABC為等邊三角形,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2-bx-c的圖象與x軸交于A、B兩點,當時x=1,二次函數(shù)取得最大值4,且|OA|=-
1
n
+2,
(1)求二次函數(shù)的解析式.
(2)已知點P在二次函數(shù)的圖象上,且有S△PAB=8,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖是我省某地一座拋物線形拱橋,橋拱在豎直平面內(nèi),與水平橋面相交于A,B兩點,拱橋最高點C到AB的距離為9m,AB=36m,D,E為拱橋底部的兩點,且DEAB,點E到直線AB的距離為7m,則DE的長為______m.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx經(jīng)過圓點O和x軸上的另一點A,它的對稱軸x=2與x軸交于點C,直線y=-2x-1與拋物線y=a2+bx交于點B(-2,m),且y軸、直線x=2分別交于點D、E.
(1)求m的值及該拋物線對應的函數(shù)解析式;
(2)試判斷△ECB的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,當x=2時,拋物線y=ax2+bx+c取得最小值-1,并且與y軸交于點C(0,3),與x軸交于點A,B(A在B的右邊).
(1)求拋物線的解析式.
(2)D是線段AC的中點,E為線段AC上的一動點(不與A,C重合),過點E作y軸的平行線EF與拋物線交于點F.問:是否存在△DEF與△AOC相似?若存在,求出點E的坐標;若不存在,請說明理由.
(3)在拋物線的對稱軸上是否存在點P,使得△APD為等腰三角形?若存在,請直接寫出點p的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在直角坐標平面中,O為坐標原點,二次函數(shù)y=x2+bx+c的圖象與x軸的負半軸相交于點C(如圖),點C的坐標為(0,-3),且BO=CO
(1)求這個二次函數(shù)的解析式;
(2)設這個二次函數(shù)的圖象的頂點為M,求AM的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某種商品在30天內(nèi)每件銷售價格P(元)與時間t(天)的函數(shù)關系用如圖所示的兩條線段表示,該商品在30天內(nèi)日銷售量Q(件)與時間t(天)之間的函數(shù)關系是Q=-t+40(0<t≤30,t是整數(shù)).
(1)求該商品每件的銷售價格P與時間t的函數(shù)關系式,并寫出自變量t的取值范圍;
(2)求該商品的日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天?(日銷售金額=每件的銷售價格×日銷售量)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知如圖,拋物線t=ax2+bx+c與x軸相交于B(1,0)、C(4,0)兩點,與y軸的正半軸相交于A點,過A、B、C三點的⊙P與y軸相切于點A,M為y軸負半軸上的一個動點,直線MB交拋物線于N,交⊙P于D.
(1)填空:A點坐標是______,⊙P半徑的長是______,a=______,b=______,c=______;
(2)若S△BNC:S△AOB=15:2,求N點的坐標;
(3)若△AOB與以A、B、D為頂點的三角形相似,求MB•MD的值.

查看答案和解析>>

同步練習冊答案