【題目】在平面直角坐標系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段的中點坐標為

(1)如圖(1),C為線段AB中點,A點坐標為(0,4),B點坐標為(5,4),則點C的坐標為   

(2)如圖(2),F(xiàn)為線段DE中點,D點坐標為(﹣4,﹣3),E點坐標為(1,﹣3).則點F的坐標為________

應用:

(1)如圖(3),長方形ONDF的對角線相交于點M,ON,OF分別在x軸和y軸上,O為坐標原點,點D的坐標為(4,3),則點M的坐標為   ;

(2)在直角坐標系中,A(﹣1,2),B(3,1),C(1,4)三點,另有一點DA,B,C構成平行四邊形的頂點,直接寫出D的坐標.

【答案】(1) (2.5,4);(2)(-1.5,-3);(3)(2,1.5);(4) (-3,5) ,(1,-1),(5,3)

【解析】分析:(1)、根據(jù)題意中給出的中點的計算法則進行計算即可得出答案;(2)、根據(jù)平行四邊形的性質分以AB為對角線、BC為對角線和以AC為對角線三種情況分別求出答案.

詳解:(1)、(0+5)÷2=2.5;(4+4)÷2=4,則點C的坐標為(2.5,4);

(2)、(-4+1)÷2=-1.5, (-3-3)÷2=-3,則點F的坐標為(-1.5,-3);

應用(1)、∵矩形的對角線互相平分, ∴(0+4)÷2=2, (0+3)÷2=1.5,

∴點M的坐標為(2,1.5);

(2)、設點D的坐標為(x,y),

若以AB為對角線,AC,BC為鄰邊構成平行四邊形,則AB,CD的中點重合,

,解得:;

若以BC為對角線,AB,AC為鄰邊構成平行四邊形,則AD,BC的中點重合

,解得:;

若以AC為對角線,AB,BC為鄰邊構成平行四邊形,則BD,AC的中點重合

,解得:;

綜上可知,點D的坐標為(1,-1)或(5,3)或(-3,5).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常?梢缘玫揭恍┯杏玫男畔,或可以求出一些不規(guī)則圖形的面積.

(1)如圖1所示,將一張長方形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為m的大正方形,兩塊是邊長都為n的小正方形,五塊是長為m,寬為n的全等小長方形,且m>n.觀察圖形,可以發(fā)現(xiàn)代數(shù)式2m2+5mn+2n2可以因式分解為 .

(2)若圖1中每塊小長方形的面積為12cm2,四個正方形的面積和為50 cm2,試求圖中所有裁剪線(虛線部分)長之和.

(3)將圖2中邊長為ab的正方形拼在一起,B,C,G三點在同一條直線上,連接BDBF,若這兩個正方形的邊長滿足a+b=10,ab=16,請求出陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標是(4,3),動圓D經(jīng)過A,O,分別與兩坐標軸的正半軸交于點E,F(xiàn).當EF⊥OA時,此時EF=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一種電視機原價每臺2600元,國慶期間以九五折出售,并且商家規(guī)定滿2000元返200元.若購買這種電視機實際需要多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠MON=60°,作邊長為1的正六邊形A1B1C1D1E1F1 , 邊A1B1、F1E1分別在射線OM、ON上,邊C1D1所在的直線分別交OM、ON于點A2、F2 , 以A2F2為邊作正六邊形A2B2C2D2E2F2 , 邊C2D2所在的直線分別交OM、ON于點A3、F3 , 再以A3F3為邊作正六邊形A3B3C3D3E3F3 , …,依此規(guī)律,經(jīng)第n次作圖后,點Bn到ON的距離是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,,,求證:.

證明:∵,

________________(同旁內角互補,兩直線平行),

=________(兩直線平行,內錯角相等),

又∵(已知),

________________(內錯角相等,兩直線平行),

=________(兩直線平行,內錯角相等),

-=________________,

.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C是線段AB的中點,CD平分ACE,CE平分BCD,CD=CE;

(1)求證:ACD≌△BCE;

(2)D=50°,求B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知l1l2,MN分別和直線l1、l2交于點A、B,ME分別和直線l1、l2交于點C、D,點PMN上(P點與A、B、M三點不重合).

(1)如果點PA、B兩點之間運動時,∠α、β、γ之間有何數(shù)量關系請說明理由;

(2)如果點PA、B兩點外側運動時,∠α、β、γ有何數(shù)量關系(只須寫出結論).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD是角平分線,BE平分∠ABC交AD于點E,點O在AB上,以OB為半徑的⊙O經(jīng)過點E,交AB于點F
(1)求證:AD是⊙O的切線;
(2)若AC=4,∠C=30°,求 的長.

查看答案和解析>>

同步練習冊答案