【題目】某服裝店用4400元購進A,B兩種新式服裝,按標價售出后可獲得毛利潤2800元(毛利潤=售價﹣進價),這兩種服裝的進價,標價如表所示.
類型價格 | A型 | B型 |
進價(元/件) | 60 | 100 |
標價(元/件) | 100 | 160 |
(1)請利用二元一次方程組求這兩種服裝各購進的件數(shù);
(2)如果A種服裝按標價的9折出售,B種服裝按標價的8折出售,那么這批服裝全部售完后,服裝店比按標價出售少收入多少元?
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠C=90°,
(1)若a=4,b=3,則c=_______;
(2)若a=24,c=30,則b=_______;
(3)若BC=11,AB=61,則AC=_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于G點,DE⊥DF,交AB于點E,連結EG、EF.
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標中,點的坐標為,點的坐標為,將線段向右平移個單位長度得到線段(點和點分別是點和點的對應點),連接、,點是線段的中點.
備用圖
(1)求點的坐標;
(2)若長方形以每秒個單位長度的速度向正下方運動,(點、、、、分別是點、、、、的對應點),當與軸重合時停止運動,連接、,設運動時間為妙,請用含的式子表示三角形的面積(不要求寫出的取值范圍);
(3)在(2)的條件下,連接、,問是否存在某一時刻,使三角形的面積等于三角形的面積?若存在,請求出值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在解不等式|x+1|>2時,我們可以采用下面的解答方法:
①當x+1≥0時,|x+1|=x+1.
∴由原不等式得x+1>2.∴可得不等式組
∴解得不等式組的解集為x>1.
②當x+1<0時,|x+1|=﹣(x+1).
∴由原不等式得﹣(x+1)>2.∴可得不等式組
∴解得不等式組的解集為x<﹣3.
綜上所述,原不等式的解集為x>1或x<﹣3.
請你仿照上述方法,嘗試解不等式|x﹣2|≤1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(6,3)、B(6,0)在直角坐標系內.以原點O為位似中心,相似比為 ,在第一象限內把線段AB縮小后得到線段CD,那么點C的坐標為( )
A.(3,1)
B.(2,0)
C.(3,3)
D.(2,1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,過點C作CE∥AD交AB于E,連接AC、DE,AC與DE交于點F.
(1)求證:四邊形AECD為平行四邊形;
(2)如果EF=2 ,∠FCD=30°,∠FDC=45°,求DC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O在線段AB上,AO=2,OB=1,OC為射線,且∠BOC=60°,動點P以每秒2個單位長度的速度從點O出發(fā),沿射線OC做勻速運動,設運動時間為t秒.
(1)當t= 秒時,則OP= , S△ABP=;
(2)當△ABP是直角三角形時,求t的值;
(3)如圖2,當AP=AB時,過點A作AQ∥BP,并使得∠QOP=∠B,求證:AQ·BP=3.為了證明AQ·BP=3,小華同學嘗試過O點作OE∥AP交BP于點E.試利用小華同學給我們的啟發(fā)補全圖形并證明AQ·BP=3.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com