如果關于x的方程數(shù)學公式的解不大于1,且m是一個正整數(shù),試確定x的值.

解:解原方程得,x=
∵此方程的解不大于1,
≤1,
∴m≤2,
∵m是一個正整數(shù),
∴m=1或m=2,
當m=1時,x=;
當x=2時,y=1.
故答案為:或1.
分析:先把m當作已知表示出x的值,再根據(jù)x的值不大于1得到關于m的不等式,求出m的取值范圍,再由m是一個正整數(shù)即可確定出m的值,進而得出x的值.
點評:本題考查的是解一元一次方程及解一元一次不等式,解答此題的關鍵是把m當作已知表示出x的值,再根據(jù)x的取值范圍得到關于m的不等式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料:
關于x的方程:x+
1
x
=c+
1
c
的解是x1=c,x2=
1
c
;x-
1
x
=c-
1
c
(即x+
-1
x
=c+
-1
c
)的解是x1=cx2=-
1
c
;x+
2
x
=c+
2
c
的解是x1=c,x2=
2
c
;x+
3
x
=c+
3
c
的解是x1=c,x2=
3
c
;…
(1)請觀察上述方程與解的特征,比較關于x的方程x+
m
x
=c+
m
c
(m≠0)
與它們的關系,猜想它的解是什么?并利用“方程的解”的概念進行驗證.
(2)由上述的觀察、比較、猜想、驗證,可以得出結論:
如果方程的左邊是未知數(shù)與其倒數(shù)的倍數(shù)的和,方程的右邊的形式與左邊完全相同,只是把其中的未知數(shù)換成了某個常數(shù),那么這樣的方程可以直接得解,請用這個結論解關于x的方程:x+
2
x-1
=a+
2
a-1

查看答案和解析>>

科目:初中數(shù)學 來源:《第2章 一元二次方程》2010年創(chuàng)新題(解析版) 題型:解答題

已知關于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個不相等的實數(shù)根x1,x2
(1)求k的取值范圍;
(2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由.
解:(1)根據(jù)題意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
∴當k<時,方程有兩個不相等的實數(shù)根.
(2)存在.如果方程的兩個實數(shù)根互為相反數(shù),則x1+x2==0,解得k=
檢驗知k==0的解.
所以當k=時,方程的兩實數(shù)根x1,x2互為相反數(shù).
當你讀了上面的解答過程后,請判斷是否有錯誤?如果有,請指出錯誤之處,直接寫出正確的答案.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年山東省濰坊市青州市中考數(shù)學模擬試卷(解析版) 題型:解答題

(2005•成都)如果關于x的方程的解也是不等式組的一個解,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《不等式與不等式組》(03)(解析版) 題型:解答題

(2005•成都)如果關于x的方程的解也是不等式組的一個解,求m的取值范圍.

查看答案和解析>>

同步練習冊答案